
FINAL PREPRINT

A Coinductive Monad for Prop-Bounded Recursion ∗

Adam Megacz
UC Berkeley

megacz@cs.berkeley.edu

Abstract

This paper develops machinery necessary to mechanically import
arbitrary functional programs into Coq’s type theory, manually
strengthen their specifications with additional proofs, and then me-
chanicaly re-extract the newly-certified program in a form which is
as efficient as the original program.

In order to facilitate this goal, the coinductive technique of [Cap05]
is modified to form a monad whose operators are the constructors
of a coinductive type rather than functions defined over the type.
The inductive invariant technique of [KM03] is extended to allow
optional “after the fact” termination proofs. These proofs inhabit
members of Prop, and therefore do not affect extracted code.

Compared to [Cap05], the new monad makes it possible to directly
represent unrestricted recursion without violating productivity re-
quirements [Gim95], and it produces efficient code via Coq’s ex-
traction mechanism. The disadvantages of this technique include
reliance on the JMeq axiom [McB00] and a significantly more com-
plex notion of equality.

The resulting technique is packaged as a Coq library, and is suitable
for formalizing programs written in any side-effect-free functional
language with call-by-value semantics.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Lambda calculus and related systems; Proof theory

General Terms Verification

Keywords Type Theory, Coinductive Types

1. Introduction

The Calculus of Constructions [CH88] and related type theories
provide a rich environment for proof development. Such environ-
ments are particularly well-suited to reasoning about total func-
tional programs [Tur04] as they are capable of representing both
the program and its correctness proof in the same formalism.

Unfortunately, most functional languages are not total; in practice
unrestricted recursion and partial functions are the norm, and the

∗ This material is based upon work supported by a National Science Foun-
dation graduate fellowship.

[Copyright notice will appear here once ’preprint’ option is removed.]

ability to reason about such programs is important for a practical
tool. Type theory cannot directly represent these functions because
any term in the theory could potentially be part of a proof, and
proofs must be strongly normalizing in order to preserve consis-
tency.

To date, a number of encodings and techniques have been proposed
to deal with this problem. Section 2 classifies these techniques into
six categories, briefly touching on the advantages and disadvan-
tages of each. Section 3 introduces an alternative to Capretta’s en-
coding [Cap05] of partial functions as values of coinductive type.
Section 4 introduces a pair of inductive predicates over the coin-
ductive monad which can be used to prove termination of partial
functions. These predicates are “after the fact” in the sense that the
implementation of a function need involve forethought about the
form of its termination proof. Moreover, these proof terms belong
to members of Prop, and therefore do not clutter or degrade the
performance of extracted code.

Section 5 describes the implementation of this technique as a Coq
library, including the eval function. This function combines a par-
tial function and its termination proof to yield a total function which
is first-class within the type theory and can be evaluated within the
proof assistant. A notable limitation of this implementation is that it
currently supports only call-by-value evaluation in languages free
from side effects; at the moment it is better suited to languages such
as Ωmega[She05] or Id[Nik91] than to call-by-need languages such
as Haskell, or languages with side effects such as ML.

Section 6 details several example programs and their formalization
using the coinductive computation monad. Section 7 describes ad-
vanced applications of the coinductive monad, including composi-
tion of computations over different sets, higher-order computations,
and first-class termination proofs. Section 8 compares this work to
[Cap05]. Section 9 summarizes the paper and outlines directions
for future work.

2. Existing Work

2.1 Syntactically Decreasing Calls

In the special case where every recursive invocation of a func-
tion is applied to an inductive value which is strictly smaller
than the present argument, and where this fact is syntactically
obvious[Gim98], Coq provides built-in machinery for translating
self-referential values into equivalent well-founded terms. Unfortu-
nately, this syntactic check often fails in situations where the func-
tion is, nonetheless, well-founded. Consider the following “fast
exponentiation” algorithm, taken from [GBR06]:

2n =

8><>:
1 if n = 0

2 · 2n−1 if n is odd
2n/2 · 2n/2 if n is even

FINAL PREPRINT 1 2007/9/25

Using the following auxiliary functions,

Definition square n := n * n.

Fixpoint divide_by_two (n:nat) : nat :=
match n with
| 0 => 0
| 1 => 0
| (S (S n’)) => S (divide_by_two n’)

end.

A straightforward coding of the fast exponentiation algorithm in
Coq would read like this:

(*
Fixpoint pow2 (n: nat) : nat :=
match n with
| 0 => 1
| (S n’) =>
match even_odd_dec (S n’) with
| left _ => square (pow2

(divide_by_two (S n’)))
| right _ => n * (pow2 n’)
end

end.
<<invalid>> *)

Unfortunately, it is not syntactically obvious to Coq that
divide by two (S n’) is less than S n’. Although it is not diffi-
cult to prove this fact, Coq is only interested in syntactic arguments.

2.2 Set-bounded recursion

Perhaps the most popular of the well-established techniques, Set-
bounded recursion involves adding an additional argument to the
function and calling each recursive invocation on some subcompo-
nent of that argument. As long as the initial value provided for this
argument is sufficiently large, the result will be the same as if the
recursive function were evaluated directly.

Inductive res (A : Set) : Set :=
| Ok : A -> res A
| Timeout : res A.

Notation "var <-- e ; rest" :=
(match e with
| Ok x => (fun var => rest) x
| Timeout => Timeout _ end)
(at level 60, right associativity).

Fixpoint pow2_bounded (n:nat) (depth:nat)
{struct depth}

: res nat :=
match depth with 0 => Timeout | (S depth) =>
match n with
| 0 => Ok 1
| (S n’) =>
match even_odd_dec (S n’) with
| left _ => x <-- pow2_bounded

(divide_by_two (S n’))
depth

; Ok (square x)
| right _ => x <-- pow2_bounded n’ depth

; Ok (x*2)
end

end.

Note that because the original function returns a value in Set,
the bounding argument cannot be in Prop, because the function
decomposes the bounding argument in order to produce its return
value, and a Prop cannot be decomposed in order to produce a Set.
This is unfortunate, because it means that the extracted code will
contain a great deal of extra computational content which cannot
be optimized away by even a highly intelligent compiler:

(** val pow2_bounded : nat -> nat -> nat res **)

let rec pow2_bounded n = function
| O -> Timeout
| S depth0 ->
match n with
| O -> Ok (S O)
| S n’ ->
match even_odd_dec (S n’) with
| Left ->
match pow2_bounded

(divide_by_two (S n’))
depth0 with

| Ok x0 -> Ok (square x0)
| Timeout -> Timeout
end

| Right ->
match pow2_bounded n’ depth0 with
| Ok x0 -> Ok (mult x0 (S (S O)))
| Timeout -> Timeout
end

end
end

end

Furthermore, the additional nat argument can become cumber-
some at times and adds a fairly unnatural element to proofs.

Niqui and Bertrot quantified the performance penalty of such con-
structs in a Haskell extraction and found[NB03]:

Later we modified the whole formalization and we used the
Prop-sorted accessibility. Our tests showed a 25% to 30%
decrease in both time and memory usage of the extracted
algorithms.

2.3 Ad-hoc Predicate-bounded Recursion

Bove [Bov01] suggests introducing a predicate over the domain of
each partial function such that the predicate holds on that sub-
set of the domain for which the function terminates. work on
automatically generating such predicates has been explored in
[Nor93, BC01]. Both of these developments were carried out in
ALF[Nor88], which does not distinguish between computationally
extractable and computationally irrelevant types.

Unfortunately, if the predicate type has more than one construc-
tor, it will need to be in Set or Type, and will carry with it the
disadvantages of the previous section. Forming ad-hoc predicates
with a single constructor is often quite difficult, and requires care-
ful planning of the termination proof when writing the function.
Moreover, as [NB03] lament, “unfortunately the second approach
[Prop-bounded recursion] is more technical and requires an ad-
vanced knowledge of the internals of Coq... a detailed study of the
proof terms of Coq was necessary.”

FINAL PREPRINT 2 2007/9/25

2.4 Accessibility Predicates

As a result of the consequences of using a Set bound for compu-
tations, a number of different techniques have been developed for
applying a Prop bound instead. Nearly all of them are in some way
built on the basic technique employed by the Coq.Init.Wf library.

A programmer who wishes to use this library must structure any
functions such that they recurse on a primary argument, and must
choose some well-founded relation denoted by < under which
each recursive call is applied to a lesser value than the argument to
the callee.

Proving that the chosen relation is well-founded amounts to show-
ing that every value in the domain of the primary argument is ac-
cessible under this relation. A value x is accessible if one of the
following two cases holds:

1. No value is less than x under the chosen relation

2. All values less than x under the chosen relation are accessible

At first glance, this would appear to lend itself to an inductive
definition with two constructors, one for each case; something
approximately like this:

Inductive Acc (x:nat) : Prop :=
| Acc_nopred : ~ (exists y, y<x) -> Acc x
| Acc_haspred : (forall y, y<x -> Acc y) -> Acc x.

However, the first constructor, Acc nopred, turns out to be super-
fluous; if x has no predecessors we can easily construct Acc haspred
x because the left hand side of its implication is equivalent to
forall y, False->Acc y, which is trivially true.

Eliminating this first constructor leaves a single-constructor Prop
type, which is a special case in which a Prop may be destructed
as part of the process of constructing a value in Set. Indeed,
this is the motivation for choosing this particular definition of
accessibility in the first place. Note that this critera can be exploited
by other techniques for representing recursion, but in those cases it
is typically exposed to the user – that is, they bear the burden of
working with an awkward single-constructor type.1

Once accessibility has been proven, the user must rewrite all func-
tions in a particular form. Assume that the user’s original function
is in the following form

Fixpoint f (a:A) : (rt a) :=
... f a’ ...

where rt is some function which computes the return type for a
particular argument a, and where a’ is some subexpression. The
user must rewrite this function as:

Fixpoint f (a:A)
(f’:forall a’:A, a’<a -> rt a’)

: (rt a) :=
... f’ a’ ...

Note the extra f’ argument is passed to the function, and it is this
argument (rather than the function itself) which is applied to the
recursive argument. Also note that f’ takes only a single argument,
while f takes two.

1 An important advantage of the technique presented in this paper is that the
single-constructor type is completely concealed from the user, and is used
only internally to pass proofs between the Terminates predicate and eval
function.

Once the user’s function has been rewritten in this manner, the li-
brary’s well founded induction function can be used to trans-
form the rewritten function and accessibility proof into a closed
form function of type forall a:A, rt a.

The example from the previous section would be rewritten as fol-
lows:

(* pre-packaged proof lt_wf:(well_founded lt) *)
Require Import Coq.Arith.Wf_nat.

Definition pow2_wf0 :
forall n : nat,

(forall y : nat, y < n -> nat) -> nat.
refine (
fun n => fun pow2_wf =>
match n with
| 0 => 1
| (S n’) =>
match even_odd_dec (S n’) with
| left _ => square (pow2_wf

(divide_by_two
(S n’)) _)

| right _ => 2 * (pow2_wf n’ _)
end

end
).
(* proof omitted *)

Definition pow2_wf :=
@well_founded_induction

nat lt lt_wf (fun _ => nat) pow2_wf0.

In reality the development is more complex – the omitted proof
forces the body of the refine tactic to be rewritten using quite a
few return clauses. Also, had the relation not been the less-than
relation on nats, the user would have had to prove well founded
manually.

Perhaps the most serious shortcoming, however, is the fact that the
implementation of the function is entangled with its termination
argument. It is not possible to write the function first, and then
worry about termination later, which is necessary in order to be able
to mechanically import and export code written in other languages.

Several other techniques act as “front ends” to this library (Coq’s
RecursiveDefinition and others), and indeed the inner machin-
ery of the eval function introduced in section 5 has a very similar
structure.

2.5 Extensions to the Type Theory

Another branch of work involves directly extending the type theory
to include partial objects [CS87, CS93, Smi88, Smi95, Aud91,
GPZ99]. However, this technique restricts recursion to admissible
types.

Dybjer [Dyb00] suggests a more modest change, adding the abil-
ity to introduce simultaneous inductive-recursive definitions. This
technique makes it possible to define a recursive function over an
inductive predicate in which the definition of the inductive predi-
cate depends upon the function.

FINAL PREPRINT 3 2007/9/25

2.6 Representing Computations as Coinductive Values

In [Cap05], Capretta introduced a coinductive type for represent-
ing potentially-nonterminating computations. The type proposed in
that paper is essentially equivalent to:

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Step : #A -> #A
where "# A" := (Computation A).

Capretta’s paper is focused primarily on analysis of program ex-
ecution traces, for which these constructors are quite well-suited.
However expressing programs using this datatype can be difficult,
particularly when branching computations are involved.

This paper extends Capretta’s type to one whose constructors form
a monad directly. As will be shown in the next section, the new
type for the second constructor is able to support nested recursion
directly.

3. The Coinductive Computation Monad

This paper proposes representing computations as values of the
following coinductive type:

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Bind : (A->#A) -> #A -> #A.
where "# A" := (Computation A).

The Return constructor is used to simply lift a normal value into
the trivial computation which always terminates with that value.

The Bind constructor is used in the same way as the >>= operator
in Haskell – it takes a computation and a function which produces a
second computation from the first computation’s return value. For
example, the following computation is equivalent to Return 5:

Bind (fun x => Return (x+2)) (Return 3)

The following notation will be used as a convenience:

Notation "var <- c ; rest" :=
(Bind (fun var => rest) c)
(at level 60, right associativity).

(* ocasionally required to satisfy productivity *)
Notation "’call’ c" :=
(c >>= (fun x=>(Return x)))
(at level 60, right associativity).

Using this new monad and notation, the fast exponentiation pro-
gram can be written as:

CoFixpoint pow2 (n:nat) : #nat :=
match n with
| 0 => Return 1
| (S n’) =>
match even_odd_dec (S n’) with
| left _ => x <- pow2 (divide_by_two (S n’))

; Return (square x)
| right _ => x <- pow2 n’

; Return (x*2)
end

end.

Coq will accept this definition, and we can use the bounded eval
function to test the result of evaluating this function to a particular
number of evaluation steps:

Eval compute in (bounded_eval 10 (pow2 8)).
(* Some 256 *)

The use of a co-inductive type serves two purposes:

• It permits the representation of infinitely long computations as
infinitely large coinductive objects.

• It lets the user write a function which directly references itself,
without the syntactic restrictions of Fixpoint.

4. Termination Proofs

We can prove that a particular computation terminates by demon-
strating the existence of an inductive object whose size bounds the
length of the computation. Because inductive object must be of fi-
nite size, the existence of such an object is proof that the corre-
sponding computation is of finite length.

4.1 A First Attempt

A first attempt at such a type is given below:

Inductive Terminates : #A -> Prop :=
| TerminateReturn :

forall (a:A),
Terminates (Return a)

| TerminateBind :
forall (f:A->#A) (c:#A),
Terminates c
-> (forall (a:A), Terminates (f a))
-> Terminates (Bind f c)

The two constructors (TerminateReturn and TerminateBind)
correspond to the two constructors of the Computation (#) type.

The first constructor, (TerminateReturn c), can be used for any
c which is a Return. This is simply stating that every Return
terminates, and no additional information is required in order to
produce a proof of its termination.

The second constructor, (TerminateBind f c), is more com-
plex. It states that in order to prove that (Bind f c) terminates,
we must prove:

1. That c terminates

2. For all values a in the domain of f, the computation (f a)
terminates

4.2 Problems

This inductive predicate does in fact accomplish its task – it proves
that the corresponding computation terminates. However, the con-
dition is too strong. Consider this function:

CoFixpoint diverge_on_odd_numbers (n:nat) : #nat :=
call
match n with
| 0 => Return 0
| 1 => diverge_on_odd_numbers 1
| (S (S n)) => diverge_on_odd_numbers n

end.

FINAL PREPRINT 4 2007/9/25

Note that this function terminates for even arguments and di-
verges for odd arguments. An attempt to prove the following fairly
straightforward theorem runs in to problems, however:

Theorem two_terminates :
Terminates ((Return 2) >>= diverge_on_odd_numbers).

The result is the unsatisfiable proof obligation

forall a : nat, Terminates (diverge_on_odd_numbers a)

Clearly this goal is false when a=1, for example.

4.3 Weakening the Termination Condition

The problem is that the requirements for proving that (Bind f c)
terminates are too strong. It is not necessary to prove that (f a)
terminates for all a – we only need to prove that it terminates for
values of a which could have been produced by c. This property is
described as an inductive invariant in [KM03]:

The inductive invariants we introduced in this paper are
specific invariants of the functional. They are predicates on
A ⇒ B that are defined by input-output relations (predi-
cates on A × B). We have found that the extra information
about the function being defined that needs to be known in
order to prove termination is invariably in the form of an
invariant relation.

Indeed, after extending the computation structure to include nested
recursion as a first-class concept, proving termination of the “outer”
nested call often requires proving facts about the value returned by
the “inner” nested call.

This concept can be formalized with an auxiliary predicate called
TerminatesWith c a, which acts as a proof that computation c
(of type #A) terminates and furthermore, terminates with the value
a (of type A).

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

This type is fairly straightforward; Return a always terminates
with a, and (Bind f c) terminates with a if (f a’) terminates
with a and c terminates with a’.

Armed with this new auxiliary predicate, it is possible to rephrase
the weakened termination condition:

Inductive Terminates : #A -> Prop :=
| TerminateReturn :
forall (a:A),
Terminates (Return a)

| TerminateBind :
forall (f:A->#A) (c:#A),
Terminates c
-> (forall (a’:A),

(TerminatesWith c a’)
-> Terminates (f a’))

-> Terminates (Bind f c)

Note in particular the last hypothesis of the second constructor. This
type indicates that in order to prove that (Bind f c) terminates,
one must prove that for every value a’ which c could possibly have
terminated with, (f a’) terminates.

It is interesting to note that the TerminatesWith predicate never
appears as a proof obligation for users of the predicate. Be-
cause it occurs negatively in the TerminateBind constructor,
TerminatesWith appears only as a hypothesis for the user to
take advantage of – typically by using inversion to prove False
in situations where a value of a’ has arisen which could not have
been returned by c.

It should also be noted that the Terminates predicate is tech-
nically unnecessary in the presence of TerminatesWith: the
predicate (Terminates c) logically equivalent to (exists a,
TerminatesWith c a), and each can be used to derive the other.
Indeed, they exist as distinct predicates for largely historical and
pedagogical reasons, and the Terminates predicate may be dep-
recated in future versions of the library.

5. Evaluating Computations

As shown earlier, a computation whose termination is dubious can
be evaluated to a certain number of evaluation steps using the
library’s bounded eval function:

bounded_eval : forall A:Set, nat -> #A -> option A

However, if a termination proof is available, one can instead coerce
a computation of type A->#A to a simple function of type A->A.
This is done using the eval function:

eval : forall (A:Set) (c:#A), Terminates c -> A

5.1 The InvokedBy Predicate

The eval function is perhaps the most interesting part of the li-
brary. Before diving into the details of how eval works, it is nec-
essary to first explain a predicate InvokedBy, which is internal to
the library – the user never encounters it.

Intuitively, InvokedBy a b means that a is a subcomputation of
b. If b is in the form Return , then it has no subcomputations,
so one will never encounter a predicate of the form InvokedBy
(Return). Rather, the InvokedBy predicate serves to enumerate
the two possible subcomputations of a Bind. For any c and f,

• We know that c is a subcomputation of Bind f c; that is,
InvokedBy c (Bind f c)

• Assuming c terminates with the value a, we know that (f a)
is a subcomputation of Bind f c; that is, InvokedBy (f a)
(Bind f c).

The definition of InvokedBy simply formalizes this:

Inductive InvokedBy : #A -> #A -> Prop :=
| invokesPrev : forall

(c:#A)
(f:A->#A),
InvokedBy c (c >>= f)

| invokesFunc : forall
(c:#A)
(f:A->#A)
(a’:A)
(_:TerminatesWith c a’),
InvokedBy (f a’) (c >>= f).

FINAL PREPRINT 5 2007/9/25

The remainder of the development parallels quite closely the devel-
opment of the well founded induction function in Coq.Init.Wf,
and InvokedBy plays a role very similar to that of the relation (<).

5.2 The Safe Predicate

Once the user supplies a computation c:#A and a proof Terminates
c, the library internally will use that termination proof to construct
an object of type Safe c:

Inductive Safe : #A -> Prop :=
Safe_intro :
forall (c:#A),

(forall (c’:#A),
InvokedBy c’ c -> Safe c’)

-> Safe c.

Note the similarity between Safe and the Acc predicate from
Coq.Init.Wf. The key feature to observe is that the Safe pred-
icate has only one constructor; and therefore can be destructed in
the process of creating a value in Set. This is precisely what eval
does:

Theorem termination_is_safe :
forall (A:Set) (c:#A) (t:Terminates A c), Safe A c.
(* omitted *)

Notation "! c" :=
{a:A|TerminatesWith c a} (at level 5).

Definition eval’ C c (s:Safe C c)
: {a:C|TerminatesWith c a}.
(* omitted *)

Definition eval (A:Set) (c:#A) (t:Terminates c)
: A :=

match eval’ c (termination_is_safe A c t) with
| exist x pf => x

end.

Utilizing the eval function, one can execute a computation “to
completion” provided the termination proof:

Definition pow2_eval (n:nat) :=
eval (pow2 n) (pow2_terminates n).

(* note return type is nat, not #nat *)
Check pow2_eval.
(* pow2_eval : nat -> nat *)

Eval compute in (pow2_eval 4).
(* 16 *)

5.3 Extracting Code

Extracting the function pow2 eval gives the following:

eva’ :: (Computation a1) -> a1
eva’ c =
case c of
Return x -> x
Bind f cn -> eval (f (eval cn))

pow2 :: Nat -> Computation Nat
pow2 n =
case n of
O -> Return (S O)
S n’ ->

case even_odd_dec (S n’) of
Left -> Bind

(\x -> Return (square x))
(pow2 (divide_by_two (S n’)))

Right -> Bind
(\x -> Return (mult x (S (S O))))
(pow2 n’)

pow2_eval :: Nat -> Nat
pow2_eval n =
eval (pow2 n)

It is fairly easy to see that the only difference between the program-
mer’s intent and the extracted function is the Bind and Return
constructors.

Indeed, if these constructors are (syntactically) removed and local
beta reduction is performed on what is left, the results are precisely
what the programmer wrote. It is reasonable to suspect that a more
sophisticated extraction could remove them to produce a program
which exactly matches the user’s intent.

6. Examples

This section details two simple examples which apply the tech-
nique.

6.1 Euclid’s GCD Algorithm

Consider a simple definition of Euclid’s GCD function:

(* Euclid’s GCD Function *)
CoFixpoint euclid_gcd (a b:nat) : #nat :=
match a with
| 0 => Return b
| (S a’) =>
match b with
| 0 => Return a
| (S b’) =>
match le_gt_dec a b with
| left pf => call (euclid_gcd a (b-a))
| right pf => call (euclid_gcd (a-b) b)
end

end
end.

The termination proof for this function is easy with the help of a
general double strong induction lemma:

Theorem double_strong_induction :
forall (P:nat->nat->Prop),
(P 0 0)
-> (forall (a b:nat),

(forall (a’ b’:nat),
((a’<a /\ b’<=b)
\/(a’<=a /\ b’<b))
->(P a’ b’))

-> P a b)
-> (forall (a b:nat), P a b).

(* proof omitted *)

FINAL PREPRINT 6 2007/9/25

Using this lemma, the termination proof is quite short:

Theorem euclid_gcd_terminates :
forall a b:nat, Terminates (euclid_gcd a b).

apply double_strong_induction.

(* uncomp is a tactic which acts like unfold *)
uncomp euclid_gcd; constructor.

intros; uncomp euclid_gcd.
destruct a;

try destruct b;
try constructor.

destruct (le_gt_dec (S a) (S b));
constructor;
try apply H;
try omega;
intros;
constructor.

Qed.

Termination for this program can be demonstrated easily using
most of the techniques from section 2 because care was taken
when writing the GCD function to ensure that the recursion did not
reverse the order of the arguments – even though reversing them
would not affect the termination or correctness of the function.

However, had the function been written by a programmer who did
not have provability in mind at the time, the result might have been
a program like this:

(* Euclid’s GCD Function *)
CoFixpoint euclid_gcd (a b:nat) : #nat :=
match a with
| 0 => Return b
| (S a’) =>
match b with
| 0 => Return a
| (S b’) =>
match le_gt_dec a b with

(* note reversal of arguments *)
| left pf => call (euclid_gcd (b-a) a)
| right pf => call (euclid_gcd (a-b) b)
end

end
end.

Nonetheless, the termination of this “reversed” GCD function can
be established with the same proof shown above, simply by using
a stronger induction lemma:

Theorem double_strong_commutative_induction :
forall (P:nat->nat->Prop),
(P 0 0)
-> (forall (a b:nat),

(forall (a’ b’:nat),
((a’<a /\ b’<=b)
\/(a’<=a /\ b’<b)
\/(a’<b /\ b’<=a)
\/(a’<=b /\ b’<a))
->(P a’ b’))

-> P a b)
-> (forall (a b:nat), P a b).

(* proof omitted *)

6.2 McCarthy’s Function

Termination of the previous example can be established just as
easily using most of the other techniques described in section 2.
However, some functions are more difficult. One example function
whose termination is difficult to prove using metric-based methods
is McCarthy’s Function [Knu77], defined over the naturals as:

M(n) =

(
n− 10 if n > 100

M(M(n + 11)) if n ≤ 100

The actual behavior of this function is that it returns 91 for all
n ≤ 101 and n − 10 for all n > 101. However, its termination
is quite difficult to prove by standard methods, chiefly due to the
use of nested recursion.

Examples such as this are easy to formalize using the coinductive
monad technique described earlier. First, we define the partial func-
tion in Coq:

CoFixpoint mccarthy (n:nat) : #nat :=
match le_gt_dec n 100 with
| left _ => n’ <- mccarthy (11+n)

; mccarthy n’
| right _ => Return (n-10)

end.

Note that le gt dec is the Coq library function to decide if one
natural is less than another; it returns left if this is the case and
right otherwise, supplying a proof in either case.

Unlike other techniques, the proof of termination using a coinduc-
tive monad can follow the conventional prose argument, which is
approximately this: we can show by downward induction that for
90 ≤ n ≤ 100, M(n) = M(n+1) (taking M(100) = M(101) as
the base case). By a second induction we can show that M(n) = 91
over this range. By a third downward induction we can show that
M(n) = 91 holds for each chunk of eleven integers less than 100,
using the initial chunk 90 ≤ n ≤ 100 as the base case. Therefore
the function terminates for n ≤ 100. Termination for n > 100 is
immediate from the definition of the function.

A formalization of this fact involves five lemmas, each of which
corresponds exactly to one of the five previous sentences; thus the
formalization takes exactly the same shape as the most straightfor-
ward verbal proof:

Lemma mccarthy_is_m_of_n_plus_1_for_90_n_100 :
forall n k:nat,
90 <= n <= 100
-> TerminatesWith (mccarthy (n+1)) k
-> TerminatesWith (mccarthy (n)) k.

Lemma mccarthy_n_is_91_for_90_n_100 :
forall n:nat,
90 <= n <= 100
-> TerminatesWith (mccarthy n) 91.

Lemma mccarthy_n_is_91_for_blocks_of_11 :
forall k:nat,
100 > k*11
-> forall n:nat,
90-k*11 <= n <= 100-k*11
-> TerminatesWith (mccarthy n) 91.

FINAL PREPRINT 7 2007/9/25

Lemma mccarthy_terminates_for_n_le_100 :
forall n:nat,

n <= 100
-> TerminatesWith (mccarthy n) 91.

Lemma mccarthy_terminates_for_n_gt_100 :
forall n:nat,

n > 100
-> Terminates (mccarthy n).

Theorem mccarthy_terminates_for_all_n :
forall n:nat,

Terminates (mccarthy n).

7. Advanced Applications

7.1 Composing Computations over Different Sets

The definition of the coinductive type presented in section 3 is ac-
tually a simplified version of the full library definition; the com-
plete definition is more polymorphic and includes a bind operator
which is capable of composing two computations over different re-
sult sets:

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Bind : forall (B:Set), (B->#A) -> #B -> #A.
where "# A" := (Computation A).

Note that there is no size issue here: #A belongs to Type, and there-
fore may quantify over Sets such as B. However, this construction
does considerably complicate the proof that Terminates is suffi-
cient to establish the safety of eval, and seems to require the JMeq
axiom [McB00]. Fortunately, this complicated proof is completely
encapsulated within the library, and users of the library need not be
aware of it.

7.2 Higher-Order Computations

The updated definition makes it possible to define higher-order
operations on computations; for example, the fold operation with
a computation-producing function:

CoFixpoint foldc
(A B:Set)(la:list A)(b:B)(f:A->B->(#B)) : #B :=

match la with
| nil => Return b
| (cons a la’) => b’ <- f a b

; foldc A B la’ b’ f
end.

7.3 First-Class Termination Proofs

Making termination proofs first class objects opens up the possi-
bility of termination proofs paramterized over computations. This
makes it possible for a functional to be packaged with a termination
proof parameterized over its argument and a proof that its argument
terminates under suitable circumstances.

For example, the foldc function from the previous section might
be packaged with the following lemma, which offers easier proof
obligations when termination condition is immune to duplication,
rearrangement, and deletion of list elements and independent of the
accumulative argument.

Lemma foldc_termination :
forall
(A B:Set)
(la:list A)
(b0:B)
(f:A->B->#B),

(forall (a:A)(b:B),
(In a la) ->
(Terminates (f a b)))

-> Terminates (foldc la b0 f).

The lemma above (whose proof is included in the library) states
that for any function f of two arguments, foldc list b f will
terminate if it can be shown that f terminates whenever its first
argument is drawn from list. Clearly this is a sufficient but not
necessary condition for termination, but it may be much easier to
prove.

7.4 Dependently Typed Computations

This section closes by noting that nothing prevents the use of
dependently typed computations. Consider the following simple
implementation of exponentiation, and a simple arithmetic lemma
about its behavior:

Fixpoint slow_pow2 (n:nat) : nat :=
match n with
| 0 => 1
| (S n’) => 2*(slow_pow2 n’)

end.

(* (2^((2+n)/2))^2 = 2^(n+2) if n is even *)
Lemma exponentiation_lemma : forall (n:nat),
even n ->
square (slow_pow2 (divide_by_two (S (S n))))
= slow_pow2 (S (S n)).

(* proof omitted *)

Below is an example of a version of pow2 which uses Coq’s spec-
ification predicates and syntax to define a dependently-typed com-
putation whose type strongly specifieds its partial correctness with
respect to the simpler slow pow2 implementation.

Definition pow2 :
forall (n:nat), #{x|x=(slow_pow2 n)}.

refine (
cofix pow2(n:nat) : #{x|x=(slow_pow2 n)} :=
match n return #{x|x=(slow_pow2 n)} with
| 0 => Return (exist _ 1 _)
| (S n’) => match even_odd_dec (S n’) with

| left pf =>
x <- pow2 (divide_by_two (S n’))
; match x with
| exist x’ pf’ =>
Return (exist _ (square x’) _)

end
| right pf => x <- pow2 n’

; match x with
| exist x’ pf’ =>
Return (exist _ (2*x’) _)

end
end

end).

FINAL PREPRINT 8 2007/9/25

simpl; auto.
induction n’;
inversion pf; inversion H0; subst.

apply lemma; auto.
simpl; omega.

Qed.

8. Comparison to [Cap05]

As [Cap05] is the work most closely related to this paper, the
following section examines the differences in detail.

Capretta’s monad can be directly applied to non-nested recur-
sion. For dealing with nested recursion, that paper offers three
approaches.

The first approach, as proven by Theorem 4.2 of [Cap05], shows
that any recursive function can be represented in type theory, but
must be extensively manipulated. These manipulations alter the
structure of the program and make subsequent proofs about its
properties much more difficult.

The second approach called “the devil’s nest.” This approach re-
quires that recursive functions be rephrased in terms of an auxiliary
combinator devilaux, a form which is often unnatural. Additionally,
in the form given in the paper and its accompanying Coq formal-
ization [Cap07] cannot handle functions which involve a variable
number of nestings, although the paper suggests a modification to
deal with this case. It is not clear there is a way to express mutu-
ally recursive functions and higher-order recursive functions with-
out unnatural transformations of the code.

The third approach involves creating a monad not from the con-
structors of the coinductive type, as this paper does, but rather by
defining them as coinductive functions over the type of computa-
tions.

The formalization [Cap07] which accompanies [Cap05] declares
its coinductive type like this:

CoInductive Partial: Set :=
rtrn : A -> Partial

| step : Partial -> Partial.

Inductive Value : Partial -> A -> Prop :=
value_return : forall a:A, Value (rtrn a) a

| value_step : forall (x:Partial)(a:A),
Value x a -> Value (step x) a.

And the paper describes the monad’s bind operator as:

(f∗x) = Cases x of

(
paq 7→ (f a)

.x′ 7→ .(f∗x′)

Unfortunately, this combinator is the only component of the paper
which is absent from the formalization. The proper formalization
should be something along the lines of:

CoFixpoint bind
(A B:Set)(f:A->Partial B)(x:Partial A)
: Partial B :=
match x with
| rtrn a => f a
| step x’ => step (bind f x’)

end.

Indeed, it is possible to prove a theorem which is essentially equiv-
alent to the TerminateBind constructor:

Theorem capretta_termination_proofs_compose :
forall (A B:Set)

(pa:Partial A)(a:A)
(pb:A -> Partial B)(b:B),
(Value pa a) ->
(Value (pb a) b) ->
(Value (bind pb pa) b).

But unfortunately it is not possible to write programs with unre-
stricted recursion. For example, the McCarthy function presented
earlier would be written as:

CoFixpoint mccarthy (n:nat) : Partial nat :=
match le_gt_dec n 100 with
| left _ => bind mccarthy (mccarthy (11+n))
| right _ => rtrn (n-10)

end.

Unfortunately this program does not meet the criteria that “each
recursive call in the definition must be protected by at least one
constructor, and only by constructors” [Coq06] in order to ensure
productivity. Indeed, no amount of step-insertion will fix this
problem, which is fundamental because bind is not a constructor.
This problem appears to be fundamental to the monad-as-functions
approach.

9. Conclusion and Future Work

One of the major disadvantages to the use of coinductives is that
Coq currently will not automatically reduce the application of a
cofix expression, nor will the cbv tactic force such a reduction.
The usual workaround, which involves a “decomposition equality
theorem” is cumbersome to use, although for most common cases
this can be automated with an Ltac script. Hopefully future ver-
sions of Coq will extend the built-in reduction mechanism to elim-
inate the need for such workarounds.

An additional disadvantage of this paper’s technique is that com-
putations which produce identical results are often not equal under
Coq’s notion of equality. Using the coinductive monad representa-
tion, they are only equal when their execution traces are bisimilar,
which limits the use of the rewrite tactic in most cases. Further-
more, in order to satisfy the monad laws [Wad93] a weaker notion
of equality must be introduced,2 namely

Inductive computationally_equivalent
(A:Set)(ca1:#A)(ca2:#A)
: Prop :=

| computationally_equivalent_intro :
(forall a,

TerminatesWith ca1 a
<->
TerminatesWith ca2 a)

where "x =#= y" := (computationally_equivalent x y)
(at level 200).

The proof that the Terminates predicate is a sufficient condition
for safe use of eval requires the JMeq axiom [McB00] when the
two-set-polymorphic version of the monad from Section 7.1 is

2 note that, as of this writing, proofs of the monad laws and that �=#= is an
equivalence relation are not yet included in the library

FINAL PREPRINT 9 2007/9/25

used. It may be possible to substitute -fimpredicative-set for
this axiom.

As mentioned in the abstract, the long-term goal of this work it
to use Coq for purposes similar to [ABB+05] – that is, to be
able to mechanically import programs into the language of the
theorem prover, manually strengthen their specifications, and then
mechanically extract the newly-certified programs without loss of
efficiency.

The Coq library described in this paper can be downloaded from:

http://www.cs.berkeley.edu/∼megacz/computation/

Acknowledgments

I would like to thank Adam Chlipala for his helpful comments
and guidance in the early stages of this paper. I would also like
to thank the reviewers for their helpful and exceptionally detailed
comments.

References

[ABB+05] Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and
Ulf Norell. Verifying haskell programs using constructive
type theory. In Haskell ’05: Proceedings of the 2005 ACM
SIGPLAN workshop on Haskell, pages 62–73, New York, NY,
USA, 2005. ACM Press.

[Aud91] Philippe Audebaud. Partial objects in the calculus of
constructions. In Proceedings 6th Annual IEEE Symp.
on Logic in Computer Science, LICS’91, Amsterdam, The
Netherlands, 15–18 July 1991, pages 86–95. IEEE Computer
Society Press, Los Alamitos, CA, 1991.

[BC01] Ana Bove and Venanzio Capretta. Nested general recursion
and partiality in type theory. Lecture Notes in Computer
Science, 2152:121+, 2001.

[Bov01] Ana Bove. Simple general recursion in type theory. Nordic J.
of Computing, 8(1):22–42, 2001.

[Cap05] Venanzio Capretta. General recursion via coinductive types.
LMCS-1, 2:1, 2005.

[Cap07] Venanzio Capretta. Formalization accompanying general
recursion via coinductive types (rec coind.v). Downloaded
31-July-2007, 2007.

[CH88] Thierry Coquand and Gerard Huet. The calculus of
constructions. Inf. Comput., 76(2-3):95–120, 1988.

[Coq06] Development Team For Coq. The Coq Proof Assistant
Reference Manual. LogiCal Project, 2006. Version 8.1.

[CS87] Robert L. Constable and Scott F. Smith. Partial objects in
constructive type theory. In LICS, pages 183–193. IEEE
Computer Society, 1987.

[CS93] Robert L. Constable and Scott F. Smith. Computational
foundations of basic recursive function theory. Theoretical
Computer Science, 121(1–2):89–112, 1993.

[Dyb00] Peter Dybjer. A general formulation of simultaneous
inductive-recursive definitions in type theory. J. Symb. Log,
65(2):525–549, 2000.

[GBR06] David Pichardie Gilles Barthe, Julien Forest and Vlad Rusu.
Defining and reasoning about recursive functions: a practi-
cal tool for the coq proof assistant. In Proc. of 8th Inter-
national Symposium on Functional and Logic Programming
(FLOPS’06), number 3945 in Lecture Notes in Computer Sci-
ence, pages 114–129. http://www.springer.de/comp/
lncs/index.htmlSpringer-Verlag, 2006.

[Gim95] Eduardo Giménez. Codifying guarded definitions with
recursive schemes. In TYPES ’94: Selected papers from the
International Workshop on Types for Proofs and Programs,
pages 39–59, London, UK, 1995. Springer-Verlag.

[Gim98] Eduardo Gimenez. Structural recursive definitions in type
theory. In Automata, Languages and Programming, pages
397–408, 1998.

[GPZ99] Herman Geuvers, Erik Poll, and Jan Zwanenburg. Safe proof
checking in type theory with y. In CSL, pages 439–452, 1999.

[KM03] S. Krstic and J. Matthews. Inductive invariants for nested
recursion, 2003.

[Knu77] D. E. Knuth. Algorithms. 236(4):63–66, 69–72, 79–78, 80,
April 1977.

[McB00] Conor McBride. Elimination with a motive. In TYPES, pages
197–216, 2000.

[NB03] M. Niqui and Y. Bertot. Qarith: Coq formalisation of lazy
rational arithmetic, 2003.

[Nik91] R. S. Nikhil. Id language reference manual (version 90.1).
Technical Report 284-2, 1991.

[Nor88] B. Nordström. Terminating general recursion. BIT,
28(3):605–619, 1988.

[Nor93] Bengt Nordström. The ALF proof editor. In Proceedings
of the Workshop on Types for Proofs and Programs, pages
253–266, Nijmegen, 1993.

[She05] Tim Sheard. Putting curry-howard to work. In Haskell
’05: Proceedings of the 2005 ACM SIGPLAN workshop on
Haskell, pages 74–85, New York, NY, USA, 2005. ACM
Press.

[Smi88] Scott Fraser Smith. Partial objects in type theory. Technical
Report TR88-938, 1988.

[Smi95] Scott F. Smith. Hybrid partial-total type theory. Int. J. Found.
Comput. Sci, 6(3):235–263, 1995.

[Tur04] D. A. Turner. Total functional programming. 10(7):751–
768, 2004. http://www.jucs.org/jucs 10 7/total
functional programming.

[Wad93] Philip Wadler. Monads for functional programming. In
M. Broy, editor, Program Design Calculi: Proceedings of the
1992 Marktoberdorf International Summer School. Springer-
Verlag, 1993.

FINAL PREPRINT 10 2007/9/25

