
Netcache: A Distributed Buffercache Extension
CS262a, UC Berkeley, Fall 2002

Marco Barreno, Aaron Hurst, Adam Megacz

barreno@cs.berkeley.edu, ahurst@uclink.berkeley.edu, megacz@stat.berkeley.edu

Abstract

Netcache is a new distributed buffercache system
that is designed to exploit the resources on a local
area network to improve the performance of disk
reads and other block I/O read accesses. The typ-
ical round-trip latency on an Ethernet segment is
roughly an order of magnitude shorter than the seek
time of a hard disk, and the size of the pool of un-
used RAM is potentially large; Netcache exploits
this available storage as an extra layer of cache for
block I/O operations. This paper discusses the the-
ory, protocol, security implications, implementation
details, performance analysis, and plans and ideas
for future functionality enhancements of Netcache.
Netcache has been implemented and tested as part
of the Linux kernel’s buffercache, and the results are
very promising.

1. Introduction

1.1. Motivation

The exponential growth of processing power and
memory capacity over the last several decades has
unfortunately not been mirrored by performance
improvements in other critical components. The re-
sult has been computers that are increasingly lim-
ited by bottlenecks in other aspects of the system.
Hard disk accesses are a prime example. Hard drive
capacity continues to increase geometrically, but
the average seek time seems to have hit a plateau.
When a computer initiates a disk transfer, it can be
tens of millions of CPU clock cycles until the op-
erations is complete. Improvements in other as-
pects of the architecture have mitigated some of the
problem. For example, software parallelism allows
many operations to be executed in parallel with I/O
accesses, but still the penalty is present. Further-
more, there are many situations where there isn’t
an alternative to remaining completely idle. A vir-
tual memory page fault must be resolved before any
other tasks can resumed.

1.2. Caching

The first line of defense against slow secondary stor-
age has always been caching. Since it appears that
hard disk access time is not likely to make any
tremendous leaps forward anytime soon, we should
limit the need to go to the disk as much as possi-
ble. To that extent, most modern operating systems
include a mechanism for keeping frequently-used
disk information resident in memory. In Linux, the
buffercache mechanism can use up to all available
memory to keep recently accessed files quickly re-
trievable.

File caches have been quite successful, and the con-
tinual advancement in RAM performance makes
them increasingly beneficial. However, as this dis-
parity between memory and disk speed widens,
it makes cache misses disproportionately painful.
Main memory latency is currently on the order of
a few hundred nanoseconds, while a typical hard
disk may have an average access time of around 10-
15 milliseconds—five orders of magnitude slower.
The size of this latency gulf is large enough that it
is worthwhile to consider the addition of another
layer of cache hierarchy. A viable solution should
offer an access time that is within the above range
and provide storage space that is at least as big as
the amount of RAM in the computer.

1.3. LANs

Local area networks (LANs) present an attractive
means of filling this need. The round-trip latency
on an Ethernet segment is tenths of milliseconds to
milliseconds, and most LANs have an enormous
amount of unused bandwidth. Plenty of storage
space is available in the large memories of work-
stations and PCs on the network. As some work-
stations are in use and in need of extra disk cache,
there are often others that are idle and can provide
resources to the busy machines.

1.4. Netcache

Netcache is designed to exploit the available mem-
ory on a LAN for performance enhancement on
busy machines. It uses the remote RAM as an ad-
ditional level of read cache for filesystem blocks to
reduce the number of disk accesses. It boasts a num-
ber of security features and optimizations that min-
imize the risk and maximize the performance gain
of sending disk blocks to remote machines.

The contributions of our work come from both the
direct evaluation of the Netcache design as well as
the adjunct technologies associated with it. We pri-
marily focused on integrating the core concept with
the Linux kernel to test performance, but security,
integrity, and efficiency were important parts of our
exploration as well.

1.5. Organization

In this paper, we describe the Netcache system in
depth and provide a performance analysis of Net-
cache compared to unmodified Linux. Section 2 de-
tails the design of Netcache, and Section 3 delves
into the inner workings of the project. We present
an analysis of Netcache’s performance in Section 4.
Section 5 summarizes some related work, and Sec-
tion 6 outlines possible directions for further re-
search in this area.

2. Design

2.1. Philosophy

The aim of Netcache is to provide filesystem per-
formance enhancement through use of RAM on
idle remote machines as an extra layer of buffer-
cache. When a busy machine runs low on mem-
ory, it will seek out idle machines to which it can
propagate blocks for later retrieval. Those blocks are
encrypted for confidentiality, and the sender com-
putes an MD5 hash for integrity checking. On the
idle machine, the blocks are stored in the existing
buffercache but specially marked as foreign blocks
so they can be evicted first when the machine be-
comes active again. Netcache performs all these
operations automatically and requires no configura-
tion beyond inclusion of Netcache in the operating
system.

Netcache is not an entirely independent layer of the
cache hierarchy. Although main memory keeps a
copy of everything that is present in the L2 cache
(and so on), Netcache only stores blocks as they are

evicted from RAM. Technically, it serves as a vic-
tim cache for data that have been discarded from the
next higher level in the hierarchy. A block will never
be in a higher level of the cache at the same time that
it is in the Netcache, so no additional state is nec-
essary to track whether blocks have been written.
Dirty blocks are never propagated.

2.2. Assumptions

We’ve made several assumptions in undertaking
this project. First of all, we assume that network
latency is significantly less than hard disk latency
including seek time. There is certainly justifica-
tion that this is the case, and the trend in technol-
ogy indicates that it is likely to remain so for the
near future. However, significant changes in tech-
nology can not be ruled out. Cheap and abundant
non-volatile RAM, non-magnetic secondary media,
and micro-electromechanical circuitry all have the
ability to change the existing paradigm. Network
performance problems could also invalidate this as-
sumption. Netcache is appropriate for a network
with sufficient bandwidth and very low latency;
high-traffic networks may not be suitable.

Next, we assume that the LAN in question is one
subnet. This is very likely true for home networks,
building networks, and small corporate networks,
and it is a necessary assumption for our current im-
plementation.

Third, we assume that some machines on the net-
work will be idle and available for resource sharing
at the same time as others are busy and requesting
cache storage. This may not be the case in banks
of servers or corporations during the workday, but
there are many scenarios in which this is a fine as-
sumption to make. In particular, we expect this as-
sumption to hold in situations such as home net-
works and academic networks. The latter might be
dorms, offices, or labs, since students and professors
have varied schedules due to classes, meeting times,
and other activities. It should be noted that having
some idle machines on the LAN is not necessary for
correctness, but it is a prerequisite for performance
improvement.

2.3. Protocol

When a Netcache client comes online, its first action
is to solicit information about any available neigh-
bors. A query status message is broadcast over
the subnet. Any peers that receive this message
will respond with an update status to alert the

Figure 1: A graphical representation of the Netcache
protocol

new member of their location and available mem-
ory. This information is then used to construct the
peer information table, indexed by the last byte of
the IP address. Each entry then contains the time
that a peer was last contacted, its free physical mem-
ory, and its network address. This table is kept up to
date by periodic update status broadcasts; new
information is also propagated if the node’s avail-
ability to accept data changes dramatically.

When a Linux machine runs low on memory, the
first thing it tries to free is buffercache space. This
means that the host will look for a destination for
storing evicted blocks. The peer information table
is scanned to find a host with an acceptable amount
of available cache. If more than one qualifies, the fi-
nal selection is made randomly. The randomization
helps to distribute buffers among idle hosts more
evenly. Next, the information is packaged into a
network packet and sent asynchronously to the se-
lected destination using a store message. By not
blocking on the network operation, the Netcache
contributes almost no additional overhead when
storing packets.

Upon receiving a packet, the Netcache destination
allocates a portion of its remaining free physical
memory and stores the incoming data. This block

will be stored as long as there is no competition for
the space. The host’s own file cache and applica-
tions have priority over any foreign data; if more
memory is requested on the host, the foreign data
will be the first to be evicted. Because propagated
buffers cannot be dirty, this will mean only that the
host that stored the dropped packet will probably
get a cache miss but no worse. Because the host
does not depend on propagated blocks for correct-
ness, the only penalty will be the time it takes to
determine that the information is no longer in the
cache.

If the originating computer ever attempts to reload
a packet that has been stored on the network, it
will sent out a fetch request broadcast to at-
tempt to locate its cached data. To avoid having to
store and track the locations of all previously writ-
ten blocks, we don’t maintain this information; in-
stead, we query all of the neighboring computers
at once. If the block is indeed present on another
machine, that computer will respond with a fetch
reply containing the requested data. In the event
that no response is received, the call times out and
the block is reloaded from the disk.

2.4. Security

2.4.1. Trust

At the forefront of issues to consider when design-
ing a system such as Netcache is security. Casu-
ally broadcasting arbitrary disk blocks over an un-
trusted network threatens any effort made to keep
the host and its data secure. One of the key issues
in designing Netcache, then, was deciding what de-
gree of trust to place in neighboring machines on the
LAN.

On the one hand, there is naturally an implicit trust-
ing relationship between computers on one sub-
net. They tend to be controlled by the same orga-
nization, they are generally operated by friends or
coworkers, they are all usually on the inside of an
organizational firewall, and the physical and logi-
cal proximity makes it both necessary and relatively
easy to put a high degree of trust in these neighbors.

On the other hand, there are some important rea-
sons not to put full trust in the other computers.
Limiting trust can limit the damage of a break-in if
the intruder has difficulty using one compromised
computer to exploit others. The data in the buffer-
cache may also be very sensitive—any data stored
on a block device could potentially be propagated
to another machine. Personal data, classified or

confidential data, and critical system files are of
such a sensitive nature that not even a trustworthy
coworker’s machine should have access.

We examine the various security risks in terms of
possible attacks on the Netcache system.

2.4.2. Attacks

An adversary has various potential means of at-
tempting to subvert a Netcache-enabled computer
that does not have cryptographic protection.

The most obvious is that any buffers sent in the
clear to a machine controlled by the adversary could
be read, possibly compromising sensitive data or
exposing weaknesses on the propagating machine.
Only slightly less obvious is that an adversarial
computer could broadcast a fetch request for a block
belonging to another computer if it could determine
the device and block number, thereby accessing the
data.

If an adversarial computer stores a block for a non-
compromised computer, it could maliciously alter
that block to produce garbage or even alternate
valid content of the adversary’s choice. It could also
reply to a fetch request even if it had not stored the
block, returning garbage or a malicious valid block.

An adversary has various Denial Of Service (DOS)
attacks available as well. Any of the protocol
messages—query status, update status, propagate
block, fetch block—might be sent repeatedly at a
fast rate in an attempt to monopolize or overwhelm
the resources of the targeted machine, since each of
them requires some action in the receiver of the mes-
sage.

2.4.3. Our solution

In its current incarnation, Netcache employs a dual
encryption and integrity check scheme to defend
against all attacks mentioned above except DOS at-
tacks.

Each block will be encrypted using AES1 in CBC
mode2 before it is propagated to a foreign machine.

1AES is the Advanced Encryption Standard. For more infor-
mation on the standard, see NIST FIPS-197 [Nat01]; for more in-
formation on the algorithm, see The Rijndael Block Cipher [DR];
for more information on performance of Rijndael and other
AES candidates, see Performance Comparison of the AES Submis-
sions [SKW

�
].

2Cipher Block Chaining mode is a mode for a block cipher in
which blocks are chained together by taking an xor of each block
with the ciphertext of the previous block and encrypting that re-
sult rather than simply encrypting each block independently. A

The encryption key resides only in the memory of
the propagating machine and a random IV is gener-
ated for each block. This ensures the confidentiality
of each block.

The propagating machine also computes and stores
an MD5 cryptographic hash of the block upon prop-
agation. When the block is returned, the propagat-
ing machine recomputes the hash and compares it
against the stored value; if they match, the block’s
integrity is assured with very high likelihood. If
they do not match, then the block must be re-read
from disk because either the propagated block has
been altered remotely or the block has been changed
locally since propagation.

2.4.4. Regarding MD5 collisions

One concern to investigate is the possibility that two
blocks might have the same MD5 hash. This would
be a severe problem because the storing machine
might (either inadvertently or with malicious in-
tent) return a different block that has the same hash
value, thereby corrupting the data of the propagat-
ing machine.

To assess this risk, we must look at the probabil-
ity that two blocks will collide, or hash to the same
value. We will start with the estimate that there are
580.78 million people online [Nua02], which we will
use for an approximate number of computers on the
internet. A standard new hard drive size today is
80GB, and the majority of computers undoubtedly
have much smaller drives. We will also conserva-
tively assume that these computers use a block size
of 1 KB (linux generally uses a 4 KB block size). This
yields a total of

��� �����
	���
blocks among all online

computers in the world. This is undoubtedly an ex-
tremely high estimate, as a high percentage of the
blocks will be identical from machine to machine.
Finally, an MD5 hash is a 128-bit quantity, so it can
take on approximately � � �����
	���� different values.

The formula for determining the probability of a col-
lision is

��� ��� ���� � ���! � ��"$#
where � is the number of possible values (� � �%�&�
	����)
and

�
is the number of instances (

��� �'���
	 ��
). In Ap-

pendix A to the online documentation for XML RFC
2938 [KM00], it is calculated that the probability of
collision for � � � � �(�&�)	��*� is

�+�&�)	-,/.
for

� � �+�0�
	 ��1
random “initialization vector” (IV) is often used to xor with the
first block. The primary reason to use CBC is to avoid the unde-
sirable property that each block of plaintext produces the exact
same block of ciphertext each time it is encountered.

and
�&�2�
	 ,/�

for
� � �3�4�)	5� �

. This means that even
if every online computer in the world were to join
in Netcache, and if every block on each computer
were globally unique, there would still be less than
a
	��6�87

chance of finding any MD5 collision at all!

These assumptions overestimate very heavily (es-
pecially since Netcache is designed to be used on
a LAN, not the internet as a whole!), so we can con-
clude that the chance of MD5 collision is insignifi-
cant.

2.5. Unification

In modern computing environments, it is very com-
mon for a large number of workstations on a given
subnet to have mostly-identical hard drive images;
for example, in an office using Windows, almost ev-
ery machine will have an identical installation of
Windows, Word, Excel, Powerpoint, etc. Since files
always begin on a disk-block boundary, the blocks
comprising these applications will also be identical,
although they will be arranged at different locations
on the disk.

The full design of Netcache offers an optional uni-
fication mode which improves aggregate perfor-
mance in this scenario by storing identical buffers
from multiple hosts only once.

With optimal heuristics, the system can be expected
to converge to a state where the entirety of this
shared data is in memory, somewhere on the net-
work, meaning that no host will ever have to read
this data from its local disk. Other computing en-
vironments achieve this goal by putting all shared
binaries on a central server with a huge amount of
memory; however, this approach introduces a sin-
gle point of failure and increases costs by neglecting
to utilize memory on idle machines.

3. Implementation

3.1. UML

We developed and debugged our implementation
using User Mode Linux (UML) [Dik01]. UML is a
port of the Linux kernel which is designed to run as
a process on a host Linux workstation. The guest
kernel forwards all I/O requests to the host kernel,
and uses system calls such as mprotect() to im-
plement memory management. Guest processes are
scheduled by the host scheduler as threads within
the guest process’ kernel.

3.2. Introduction to the Linux buffercache

The Linux buffercache is a memory cache for filesys-
tem blocks (more generally, for blocks from any
block device). It can grow to use all available mem-
ory on the system, and it shrinks whenever new
memory is requested by the system. Linux uses a
buffer head data structure to keep track of the
relevant information for one buffer in memory. This
structure holds a pointer to the buffer data as well as
accounting information and queue pointers for the
buffer.

When a program tries to read a block, Linux hashes
the device and block number together to get a
lookup value and uses that value to find the buffer
head for the block. If no buffer head exists for that
block, it creates one. Once it has obtained the buffer
head, it checks to see whether the block is in mem-
ory. If not, it must schedule a disk read for the block.

When the system needs to free up some memory,
it first turns to the buffer cache and asks it to free
up some buffers. This is done by selecting a page
of buffers, ensuring that the buffers on the page are
clean (and scheduling disk writes if necessary), and
then dropping those buffers and buffer heads. The
page to free is selected by an approximation of LRU.

3.3. The addition of Netcache

Netcache is essentially a victim cache for the main
memory buffercache. There are two primary opera-
tions for Netcache: propagate block and fetch
block. These functions are easily integrated into
the Linux buffercache.

Whenever a block must be evicted from the buffer-
cache to free some memory, as part of the eviction
the machine calls propagate block. This selects
a machine on the LAN with free memory (if there
is any) and sends the block to that machine before
evicting it from memory. The selection happens
based on values stored from updates sent out pe-
riodically from the other machines. Once a desti-
nation is selected, propagate block encrypts the
block, serializes the encrypted block and its appro-
priate metadata, computes and stores an MD5 hash,
and sends the serialized message in a UDP packet to
the destination host. The destination host receives
and unserializes the message. If this host has be-
come busy since it last sent out an update and no
longer has room to store the block, it simply drops
the block. Otherwise, it stores the block in its local
buffercache (see Section 3.4 for details).

If no appropriate destination is found, propagate

block drops the block as would happen without
Netcache.

When the buffercache tries to read a block and finds
that it is not in memory, it calls fetch block be-
fore scheduling the disk read. This function sends
a subnet broadcast asking if any host has the block
in question. It waits on a reply and times out if no
reply is received.

If a host on the subnet does have the block re-
quested, it reserializes the metadata with the en-
crypted block and sends it back to the requesting
machine. The requesting machine unserializes and
decrypts the buffer, then computes the MD5 hash
and checks it against the stored value. If it checks
out, fetch block copies the block into the buffer
memory and returns. If not, or if the timeout ex-
pires, the machine must go to disk for the block as it
would without Netcache.

3.4. Storage of foreign buffers

When a host receives a foreign block to store for
another machine, it is able to store it in the infras-
tructure already in place for the local buffercache.
The buffer heads for the buffercache are stored in
a hash table that hashes the device and block num-
ber to get an index into the table. We have assigned
a special device number to foreign blocks so that
they can take advantage of this preexisting hash ta-
ble. When a block is received, the host uses its lo-
cal buffercache system to create a buffer head and
buffer in memory, associated with the Netcache de-
vice number rather than an actual device on the sys-
tem. The block received is then copied into the lo-
cal buffer and the metadata are stored in the buffer
head. Memory is allocated by the system for the
buffer and buffer head, as for the local buffercache.
When we place the foreign blocks in the local buffer-
cache, we give them the lowest priority so that they
will be evicted first when the idle machine becomes
busy once more.

When storing a block for another machine, it is not
necessary to keep track of the device number on the
propagating machine as part of the metadata. The
reason for this is that when the propagating ma-
chine accesses a buffer in its local buffercache (and
then seeks it from other machines), the request is
made by device and block number, so the machine
will already know the device sought when it fetches
a block from the foreign host.

The block number used to store buffers propagated
from other machines is a simple hash (shifted xor)
of the device and block number on the propagating

machine. It certainly is possible for these values to
collide, but a collision here is not a significant prob-
lem. If there is a collision, the result will be that
a block sent in response to a fetch request will be
the wrong block. This situation is significantly dif-
ferent from the MD5 collision scenario described in
Section 2.4.4 because in this case the MD5 acts as
a check, but if the MD5 collides there is no further
check. If there is a collision here and the wrong
block is returned, the machine that requested the
block will compute the MD5 and find that it does
not match the one stored, so it will drop the erro-
neous block.

3.5. Implementation of Unification

We have given unification a good deal of thought
and spelled out an implementation for it, though we
have not yet put it into our code. We are still unsure
whether we can build in adequate cryptographic
protections, and it didn’t seem worth spending the
time on this rather than some of the other pieces we
have implemented. Nevertheless, this remains the
primary extension to our implementation we would
like to write. Here we describe the plans for imple-
mentation of unification.

3.5.1. Unification with encryption

When unification is enabled, each evicted buffer is
encrypted with the following algorithm in order to
generate ciphertext:

ciphertext �:9&;=< � buffer #
>@?BA �

buffer
 �

The ciphertext is propagated across the net-
work, and the originating host retains two hashes
in a private data structure:

>@?BA �
buffer

and>@?BA �

ciphertext

.

When a host receives ciphertext, it computes>@?BA �
ciphertext

. If this value matches the cor-

responding hash of a different block’s ciphertext,
the two blocks are stored only once, since they must
be identical (assuming that a highly unlikely MD5
hash collision has not occurred, as discussed in Sec-
tion 2.4.4).

When a host wants to retrieve a buffer, it broadcasts
a request for the buffer using

>@?BA �
ciphertext

to make the request rather than the usual�
dev # block

combination. When the cipher-

text is returned,
>@?BA �

buffer

is used to decrypt
the ciphertext, yielding buffer.

3.5.2. Properties of the Unification Encryption Algo-
rithm

This encryption technique ensures two key proper-
ties:

1. Any host which had buffer at some point in
the past is able to decrypt ciphertext, even
if it was not the host which propagated the
buffer.

2. Only a host which had buffer at some point
in the past is able to decrypt ciphertext.

These properties are ensured without the use of
slow public key cryptography or cumbersome key
distribution techniques. In essence, the block itself
acts as its own encryption key.

3.5.3. Security Implications of Unification

Harmonizing unification and encryption in this
fashion has two drawbacks. First, although an at-
tacker cannot decrypt buffers being sent across the
network, the attacker can verify a guess at an en-
crypted buffer.

For example, if the contents of a password file were
transmitted across the network, an attacker would
not be able to retrieve the passwords. However, if a
block from a medical database were sent across the
network, and an attacker (say, an employer) knew
all the fields in the block except for one (say, a bi-
nary yes/no of whether or not a person’s family had
a history of heart disease), the attacker could guess
values for that field and verify those guesses by
encrypting both possible blocks and seeing which
matches the target encrypted block.

Second, since no IV is used in the encryption, iden-
tical blocks will yield identical ciphertexts (note that
this may be necessary for unification). This allows
an adversary to keep track of how often some par-
ticular blocks are transmitted even if the adversary
cannot decrypt those blocks.

Because of these limitations, a production imple-
mentation of Netcache should include a mechanism
for marking blocks as privacy-critical. One simple
way to do this would be to have the filesystem check
for files which are unreadable even by their owner,
and propagate this information to Netcache. Net-
cache could then generate ciphertext differently
for these blocks, using the following algorithm:

ciphertext �:93;=< � buffer # secret

Where secret is some random number known
only to the originating host. When this algorithm is

employed, the encrypted block will not unify with
identical blocks from other machines, eliminating
the performance advantage of unification. How-
ever, attackers cannot use ciphertext to check
guesses at the contents of a block.

3.6. Adaptability of Netcache

One of the key features of Netcache is that it re-
quires no configuration. A linux kernel compiled
with Netcache will seek out peers, propagate and
fetch blocks, and store blocks for other computers
automatically. No effort is required on the part of
the user.

4. Analysis

4.1. Disclaimer

For various reasons, porting the code from UML to
the testing cluster was far more problematic than we
expected. Part of this lies in the differences between
the UML architecture and the standard Linux archi-
tecture, and part of it lies in the intricacies of the
network booting setup we used for testing (see Sec-
tion 4.2). The one significant and unfortunate conse-
quence of this difficulty is that we had to remove all
MD5-related code from Netcache in order to make
it work on the testing cluster. We plan to investigate
this further at a later date, but these numbers reflect
a version of Netcache without MD5s.

This should not have a significant effect on the num-
bers. MD5 calculation and comparison does not
take a significant amount of time compared to net-
work latency, and because we perform only read
tests and not write tests, propagated data cannot
be stale. The only concern might be that the wrong
block is returned and not caught because we don’t
check MD5s, but since we have only one busy host
propagating files from only one block device, there
can be no block id collisions.

4.2. The cluster

For our tests, we had use of the UC Berkeley Statis-
tical Computing Facility’s cluster of eight Dell Pen-
tium II 350MHz machines. Six of the computers
have 128MB RAM and two have 96MB. They are
physically in the same room and are connected on
a 100Mb switched ethernet.

In order to facilitate a rapid develop-compile-test-
repeat cycle, we configured the machines to load
netboot (netboot.sourceforge.net) from a floppy

Figure 2: Seconds to complete benchmark vs. number of idle peers

disk. Netboot initializes the network card, obtains
an IP address from a bootp server, and downloads
the linux kernel from a tftp server. The Linux ker-
nel then boots, mounts a root filesystem via nfs,
and mounts the local hard disk on /mnt. A stati-
cally linked binary in /sbin/init contains the test
code.

This setup allowed us to use a single command to
recompile the kernel with modifications and place
it on the tftp server. We could then toggle the power
button on the cluster’s power strip to reboot all the
machines and instantly see our changes in action.

4.3. Methodology

Our goal for this test was twofold: to compare the
overhead and speedup of Netcache to the standard
Linux kernel, and to judge the effect that number of
idle peers has on the performance of a busy host.

The test first creates a file of size 200 MB. This is 1.5
to 2 times as large as the memories on the cluster
machines. Because we wanted to measure the opti-
mal performance of Netcache, we primed the cache
by sequentially reading the file into memory several
times. It is necessary to do it more than once be-
cause the busy host only propagates a block to one

peer at a time, and we wanted to ensure that there
were multiple copies of each block in the network
cache in case one was dropped.

The timed benchmark then consists of about 10,000
block reads from random points in the file. This
benchmark is run for Linux without Netcache, as
well as Linux with Netcache using 0, 1, 2, 3, 4, 5,
and 6 idle peers for one busy machine. Peers were
added in the same order for each test, and the ma-
chines with 96 MB memory were the 3rd and 4th
peers added.

4.4. Results

The results of our testing are graphed in Figure 2.
When one Netcache-enabled computer is running
standalone without any peers, this preliminary im-
plementation adds approximately 27% overhead.
With even just one peer on which to store blocks,
however, the Netcache-enabled computer signifi-
cantly outperformed the standard Linux kernel, tak-
ing only 62% as long for its run. After three or four
peers are available for storing blocks, Netcache lev-
els out to approximately 35-40% the time of stan-
dard Linux. This should be considered a close to
optimal case for this implementation of Netcache,
since the cache was well primed and one busy host

had several idle hosts to work with.

These are very promising results, and they demon-
strate that Netcache can offer a significant speedup
over standard Linux.

Given that network latencies can be on the order
of ten times shorter than disk latencies or even
less, however, one might ask why these benchmark
times for Netcache are not even smaller. The an-
swer, we believe, is that adding the infrastructure
for Netcache creates an necessary overhead that
must be taken into account. With optimization the
27% overhead demonstrated here could doubtless
be lowered, but not eliminated entirely. Unavoid-
able sources of overhead include performing en-
cryption, doing the bookkeeping for the peer tables,
and waiting for timeouts when there is a cache miss.

The results presented here demonstrate that the
Netcache distributed buffercache is a viable strat-
egy for increasing filesystem performance and mer-
its further research and development.

5. Related Work

5.1. Network RAM

There have been several papers published about us-
ing a network for memory paging, also aiming to
take advantage of the lower network latency com-
pared to disk latency. In 1994, Anderson and Neefe
proposed a network virtual memory system that
provided remote memory paging [AN94]. It too
sought performance gains from using the RAM of
other machines before having to go to a local disk.

The fundamental difference between network pag-
ing schemes such as this one and Netcache is depen-
dence on remote systems. A computer using remote
memory paging would fail if the remote computer
failed. Netcache, on the other hand, is very toler-
ant of remote machine failure. In the worst case,
there is still no failure or data corruption, but only
some overhead impacting performance. In Net-
work RAM’s worst case, there is complete system
failure.

5.2. VMware ESX Server

Our unification technique is very similar to the
content-based page sharing technique employed by in
the VMware ESX Server virtual machine monitor
presented at OSDI 2002 [Wal02]. VMware unifies
identical memory pages (rather than disk buffers)

across multiple virtual machines on a single host,
storing each page once.

Like Netcache, VMware must unify objects by con-
tent rather than address, since different hosts are
likely to store the same data in different locations.
Also like Netcache, VMware uses a hash function to
perform page comparison in C � �D time rather than
C � �FE
 .
Unlike Netcache, VMware implements copy-on-
write sharing, since requests for pages are made by
address rather than by content. By contrast, Net-
cache requests remote pages by their hash value, so
no copy on write is needed; if a buffer is modified,
its hash will change, and stale copies of the buffer
will no longer match the new hash.

VMware also implements an optimistic hashing
technique, in which a possibly-stale hash of each
page is used for unification. If a match is found,
the hash is recomputed and checked again to ensure
that the match is valid. Netcache only computes
buffer hashes when evicting a buffer from memory,
and since a buffer cannot be modified once evicted,
there is no need to implement a similar optimistic
technique.

5.3. Networks Of Workstations

The idea of using the combined memory of work-
stations on a LAN as a file cache was put forward
in the 1994 Berkeley paper “A Case for NOW (Net-
works Of Workstations)” [ACPt95]. The authors
discuss the potential performance improvement of
using LAN memory for file caches rather than go-
ing to disk and make a case for implementing such
a system, but they do not perform the implementa-
tion.

5.4. Cooperative caching

The paper by Dahlin et al. on “cooperative
caching” [DWAP94] explores the idea of using re-
mote RAM as a buffercache, but in a different en-
vironment: there is one network file server from
which many clients mount the same filesystem, and
the buffercache caches only blocks from that net-
work filesystem. This changes the problem in sig-
nificant ways, perhaps most drastically in that the
presence of a server may be assumed to manage the
caches and direct requests. The authors mention the
case where individual computers propagate and re-
quest buffers directly to and from each other (calling
it “direct client cooperation”) but dismiss it as lack-
ing too many of the server’s advantages.

Our work is in the same vein as this, but it is dif-
ferent in a few important ways. For example, Net-
cache works in general with any block device, while
this cooperative caching is limited to a network file
system. Also, cooperative caching requires one ma-
chine to function qualitatively differently from the
rest as a filesystem server and cache manager. Most
importantly, Netcache requires no configuration at
all beyond compiling it into the kernel: peers find
each other and begin to propagate and fetch when
appropriate, all completely automatically.

It should also be noted that with unification our sys-
tem will have most of the benefits of the cooperative
caching server-based system. The same block need
only be stored once, and one machine can request a
block another machine has propagated. Potentially,
a copy of every shared block will eventually be in
some machine’s memory and no request must go to
disk while this state is maintained.

6. Future Work

Although the basic functionality of Netcache is com-
plete at this time, there are several enhancements
we would like to see in it, and there are some inter-
esting research questions that might now be asked.
We plan to continue research on this topic and de-
velop Netcache further. The current state of Net-
cache is a system that works but has some of the
hacks and compromises that commonly enter into
any such project. We would like to polish Net-
cache to production level, adding some of the fea-
tures listed here, and offer it as a public patch to the
Linux kernel, perhaps someday to be merged into
the main tree. We expect to tackle many of these
issues in the near future.

6.1. Unification

Unification is not currently implemented in Net-
cache, but it is the addition we would most like to
bring to fruition. More research may need to be
done to find an appropriate balance of unification
and our cryptographic confidentiality goals, but we
expect that unification will yield strong numbers in
situations such as corporate networks, where many
machines have near identical sets of programs that
are loaded up daily.

6.2. Performance

Netcache can undoubtedly be optimized beyond its
current level. Additionally, more work needs to be

done to assess the performance of Netcache in typ-
ical workloads. This is a difficult problem, espe-
cially because most of the applications that we ex-
pect Netcache to benefit most are interactive and not
amenable to objective testing. Nevertheless, it is a
direction that must be explored before Netcache is
ready for wide release.

6.3. Expanding beyond the subnet

The current design of Netcache restricts it to one
subnet. However, it may not be uncommon that, for
example, one organization will have several subnets
in close physical proximity and will want to utilize
Netcache across the entire organization. Many of
Netcache’s features, such as broadcasting fetch re-
quests, work especially well when restricted to one
subnet. An interesting research question would be:
how well can Netcache scale above the subnet? One
key issue would be finding peers to which buffers
could be sent—a simple subnet broadcast of “I’m
here” no longer would work. A possible solution for
this would be to have some machines (e.g. subnet
gateways) act as propagate and fetch routers, com-
municating with other known routers to maintain
lists of available hosts.

6.4. Fairness

There are issues of fairness that are not adequately
addressed by the current implementation of Net-
cache. In many cases, such as a small household
LAN, this is not a problem. In corporate environ-
ments or larger LANs with many users, however,
it may become desirable to ensure that one busy
machine does not use up all resources on idle ma-
chines, leaving none for other busy machines. Pos-
sible solutions to this problem include some sort of
economic accounting or e-cash. Another solution
for egregious cases may be blacklisting machines
for a time that use more than their fair share of
resources, thereby not allowing them to claim any
more resources. The research questions here obvi-
ously extend past Netcache and into more general
issues of fairness and common resource allocation.

6.5. Selecting a destination

A better algorithm for choosing where to propagate
blocks might take into account such factors as net-
work latency to hosts, either concentrating or more
evenly distributing blocks among hosts, and the ra-
tio of busy to idle machines. The current system of
taking the first available host works, but we might

be able to increase performance with more opti-
mization here. This is also an opportunity to re-
search the intersection of load balancing and net-
work responsiveness.

6.6. How to choose timeout

The choice of an appropriate timeout is one of the
key decisions that most influences Netcache’s per-
formance. Although it is not difficult to determine
the optimal timeout for a particular LAN by experi-
mentation (we determined a good value for our test-
ing cluster through quick trial-and-error), it remains
to be seen whether a more general solution can be
found. Perhaps the optimal timeout will be propor-
tional to average ping time, within a certain range,
or perhaps it will always be an empirical factor for
any given network. We would like to do more work
towards resolving these issues.

6.7. Security against DOS attacks

Netcache remains vulnerable to DOS attacks,
though it could perhaps be hardened against them.
Dropping packets based on load would, if done cor-
rectly, lead to better graceful degradation.

7. Conclusion

Netcache implements a distributed buffercache in
the Linux kernel, complete with encryption and in-
tegrity protection, as well as automatic peer dis-
covery and cache management. In addition to the
core functionality, interesting side avenues have
been explored, such as encryption, peer discov-
ery, and block unification with MD5s. The re-
sults presented here demonstrate that the Netcache
distributed buffercache can outperform standard
Linux at least in some cases, and it is a viable strat-
egy for increasing filesystem performance and mer-
its further research and development.

8. Acknowledgments

We wish to thank Eric Brewer for advising us on
this project as our class professor. We would like
to thank David Wagner for providing us with feed-
back on our cryptographic ideas and pointing out
the information leakage in the unification scheme.
Finally, we wish to express our great appreciation to
the UC Berkeley Statistical Computing Facility for
generously giving us use of their research comput-
ing cluster for testing Netcache.

9. References

[ACPt95] Thomas E. Anderson, David E. Culler,
David A. Patterson, and the NOW team.
A case for NOW (networks of worksta-
tions). IEEE Micro., 1995.

[AN94] Eric A. Anderson and Jeanna M. Neefe.
An exploration of network RAM. Com-
puter Science Division, UC Berkeley,
December 1994.

[Dik01] Jeff Dike. A user-mode port of the linux
kernel. In Proceedings of the Fourth An-
nual Linux Showcase & Conference, 2001.
Atlanta.

[DR] Joan Daemen and Vincent Rijmen. The
Rijndael block cipher. AES Proposal: Ri-
jndael.

[DWAP94] Michael Dahlin, Randolph Wang,
Thomas E. Anderson, and David A.
Patterson. Cooperative caching: Using
remote client memory to improve file
system performance. In Proceedings
of the 1st Symposium on Operating Sys-
tems Design and Implementation, pages
267–280, November 1994.

[KM00] G. Klyne and L. Masinter. RFC
2938: Identifying composite media fail-
ures. http://www.zvon.org/tmRFC/
RFC2938/Output/index.html, Septem-
ber 2000. Appendix A: The birthday
paradox.

[Nat01] National Institute of Standards and
Technology. Federal Information Pro-
cessing Standards Publication 197: An-
nouncing the Advanced Encryption Stan-
dard (AES), November 2001.

[Nua02] Nua Ltd. How many on-
line? (worldwide total).
http://www.nua.ie/surveys/
how many online/world.html, May
2002.

[SKW G] Bruce Schneier, John Kelsey, Doug
Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Performance compari-
son of the AES submissions. AES’99.

[Wal02] Carl A. Waldspurger. Memory resource
management in VMware ESX server. In
Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation.
USENIX, December 2002.

#define MB 200
#define NUMPASSES 10
#define FILE "/mnt/stuff"

long long T() {
struct timeval tt;
gettimeofday(&tt, NULL);
return tt.tv_sec * 1000 * 1000 + tt.tv_usec;

}

main() {
printf("linear read..\n");
for (int j=0; j<2; j++) {
fd = open(FILE, 0);
for(int k=0; k<MB; k++) {

printf(" read %d MB, pass %d\n", k, j+1);
for(int i=0; i<1024; i++) {

read(fd, buf, 1024);
}

}
close(fd);

}
t = T();
fd = open(FILE, 0);
for(int k=0; k<NUMPASSES; k++) {
printf(" read %d MB\n", k);
for(int i=0; i<1024; i++) {

long int r = random();
r = r % (1024 * 1024 * MB);
if (r < 0) r = -1 * r;
lseek(fd, r, SEEK_SET);
read(fd, buf, 1024);

}
}
close(fd);

t2 = T();
printf("random reads took %f seconds\n",
((float)(t2 - t)) / (float)(1000 * 1000));

}

Figure 3: The benchmarking script.

