
Derivation of an Asynchronous Counter
with 105ps/bit load time and early completion in 90nm CMOS

Adam Megacz

July 17, 2009

Abstract

This draft memo describes the process by which I methodically derived a
design for a 4/2 GasP Kessels counter. Once settled, the counter can decrement
at full GasP speed. The time required to settle is data-dependent, but in the
worst case is no more than 104ps/bit with 200λ of wire capacitance on each
state wire.

Since settling is performed using the reverse GasP path, the counter should
– in theory – settle at around 50ps/bit. It is unclear why this performance has
not been achieved.

Schematics are complete and borrowing (but not decrementing) has been
verified. Layout and decrement testing will be completed soon.

1



1 THE COUNTER

1 The Counter

A counter consists of a sequence of bits. Each bit has four possible states: Zero,
One, Two, and Done. The state of the ith bit will be denoted by si, where the least
significant bit is the 0th bit. Bits without physical storage are considered to be in
the Done state.

The value of the ith bit is denoted by vi and defined to be:

vi =


0 if si = Done

0 if si = Zero

1 if si = One

2 if si = Two

The value of the entire counter is denoted by V and defined to be:

V =
ω∑

i=0

2ivi

Two bits are adjacent if their indices differ by 1. A GasP module appears between
each pair of adjacent bits. Two GasP modules are adjacent if they share a bit.

A GasP module is enabled when its enabling condition is met. The enabling condition
for the counter’s GasP modules is:

(E1) The module’s less significant neighbor (LSN) is in the Zero state and its more
significant neighbor (MSN) is not in the Zero state.

A finite but unbounded amount of time after becoming enabled a GasP module
will fire. When a GasP module fires, it modifies the states of the adjacent bits ac-
cording to its firing actions. The firing actions of each GasP module in the counter
depend on the state of its MSN:

(A1) If MSN=Done, set LSN:=Done

(A2) If MSN=One, set LSN:=Two and set MSN:=Zero

(A3) If MSN=Two, set LSN:=Two and set MSN:=One

2



1.1 Requirements 1 THE COUNTER

1.1 Requirements

The key to understanding the counter algorithm is observing that the enabling
condition and firing actions satisfy the following five requirements:

(R1) There is no state in which two adjacent GasP modules are both enabled. 1

(R2) Once enabled, a GasP module’s enabling condition will remain true until it
fires, and any states upon which its firing action depends will not change.

(R3) The firing actions of a GasP module always cause its enabling condition to
become false.

(R4) The firing actions of a GasP module modify the states of the adjacent bits, but
those modifications do not result in a net change to the value V of the entire
counter.

(R5) For any given k, if (∀i>k)si=Done before firing, that property will also hold
after firing. 2

Requirements (R1)-(R3) apply to all GasP circuits. Requirements (R4) and (R5) are
specific to the counter.

Observe that requirement (R1) holds: if a given GasP module is enabled then its
LSN is Zero, so the GasP module which shares that bit sees that its MSN is Zero

and is therefore not enabled. Moreover, the enabled module’s MSN is not Zero, so
the GasP module which shares that bit sees its LSN is not Zero and is therefore not
enabled.

Requirement (R2) follows from the fact that the state of the bits adjacent to a given
GasP module change only when the GasP modules adjacent to it fire, which hap-
pens only when those modules are enabled, which by (R1) cannot be the case when
the original module was enabled.

Requirement (R3) holds because in all three cases the firing actions set the LSN to
a non-Zero state.

Requirement (R4) holds for each of the three possible firing actions:

(A1): (2i+1)2 + (2i)0 = 2i+2 = 2(2i+1) = (2i+1) + (2i+1) = (2i+1)1 + (2i)2

(A2): (2i+1)1 + (2i)0 = 2i+1 = (2i+1)0 + (2i)2

(A3): (2i+1)0 + (2i)0 = 0 = (2i+1)0 + (2i)0

Requirement (R5) holds because whenever the MSN is Done before firing it remains
Done after firing (proof: induction on the bit number).

1 Requirement (R1) can be weakened slightly to the following: “if there is a state in which two GasP
modules are both enabled, none of the firing actions taken by either module invalidates the enabling
condition of the other, nor does it change any element of the state on which the firing action taken by
the other depends.” In practice this weakening is seldom helpful.

2 If we assume that physical storage is allocated only to some initial segment of the bits, this require-
ment ensures that the amount of physical storage will never increase.

3



2 ENCODINGS

2 Encodings

We now consider the problem of how to encode the four bit states using GasP state
wires. Each state wire has two states, empty and full. The verbs to fill and to drain
are used for the transitions between these wire states.

The encoding of a single bit state as a bundle of wire states is subject to both cor-
rectness and performance considerations.

2.1 Correctness Considerations

Informally, whenever a firing action changes a bit from one state to another, it is
important than these states are encoded such that any state which the bit “passes
through” on the way does not cause any other GasP module to become enabled.
An exception to this rule is allowed if the module would be enabled in the final bit
state as well and the action it takes is the same in both bit states.

More formally, if we have bit states X, Y, and Z such that the Hamming distances
H(X, Y)+H(Y, Z)=H(X, Z), then a firing action may change from bit state X to bit
state Z only if any adjacent module which is enabled in bit state Y takes the same
action in that state as in bit state Z.

2.2 Performance Considerations

GasP is fastest in the “reverse” direction; that is, emptiness propagates faster than
fullness. Indeed, this is the only distinction between the two wire conditions; the
actual voltage levels used for full and empty may be changed independently of
encoding considerations3.

Therefore, the time between two firings is minimized by choosing encodings such
that the second firing is enabled in some bit state Y, and the first event causes that
firing by changes from bit X, where every wire which is full in bit state Y is also
full in bit state X (but not vice versa). Less formally, transitions are fast when they
involve only draining and no filling.

2.3 State Encoding for the Counter

The four bit states will be encoded using two state wires, which is the minimum
number that suffice. Although there are 24 possibilities for the encoding, the cor-
rectness conditions require consideration of only the Hamming distance between
states, which reduces the number of cases to consider to three.

The correctness conditions require that states Zero and Two not be separated by a
Hamming distance of 2; if this were the case, then the firing action which changes
the LSN from Zero to Two would cause it to pass through the state One “on the
way,” which could enable an adjacent GasP module. Moreover, the adjacent GasP

3and indeed are usually chosen based on NMOS/PMOS asymmetry.

4



3 CIRCUIT DESIGN

module takes a different action on a One than a Two: (A2) vs (A3). The same argu-
ment applies to states Zero and Done. Therefore, Zero must be Hamming-adjacent
to both Two and Done. This requirement completely determines the Hamming dis-
tances of the state encodings.

The most time-critical operation in the counter is the “borrow” that occurs im-
mediately after loading the counter; all other operations require no more than a
single GasP cycle, and so are at least as fast as the environment which is perform-
ing decrement requests. Therefore, we will choose the state encoding such that the
operation which changes the LSN from a Zero state to a non-Zero state is as fast as
possible.

There are two such transitions: Zero-to-Done caused by (A1) and Zero-to-Two
caused by (A2) or (A3). Therefore we can encode Zero as both state wires full, and
each of Done and Two as having one wire empty (a different wire for each state).
Quite fortunately, this encoding satisfies the correctness conditions, since Zero is
Hamming-adjacent to both Two and Done.

Together, these two conclusions completely determine how the four states are en-
coded as GasP state wires, up to renaming of the two wires:

State Wire A Wire B
Done empty full
Zero full full
Two full empty
One empty empty

Adjacent rows in the table correspond to states with Hamming-adjacent codes;
additionally the top and bottom rows have Hamming-adjacent codes. We will call
the two state wires “ZeroOrTwo” and “ZeroOrDone” after the states in which each
wire is full.

3 Circuit Design

Having chosen the enabling condition, firing actions, and state encodings, we are
now ready to start designing circuits.

3.1 One Bit

The figure below shows the top level cell for a single bit of the counter. This in-
cludes two state wire connections to the more significant neighbor (MSN) labeled
MSN[ZeroOrTwo] and MSN[ZeroOrDone] and two state wire connections to the less
significant neighbor, labeled LSN[ZeroOrTwo] and LSN[ZeroOrDone]. Three con-
nections are provided to the environment:

• val carries the value to load into this bit of the counter.

• load causes the value presented on val to be loaded into this bit of the
counter.

5



3.2 The GasP Module 3 CIRCUIT DESIGN

• disable causes the firing of the GasP module to be disabled. This signal
must be asserted two gate delays before load and must remain asserted until
two gate delays after load is de-asserted.

3.2 The GasP Module

The diagram below shows the circuitry for a single GasP module; the large cell in
the center is the firing circuit described in the final part of this section.

Note that this diagram includes many redundant gates in order to improve read-
ability; for example, in an actual layout the two inverters whose inputs are driven
by LSN[ZeroOrDone] would be combined into a single gate.

The five gates in this diagram which drive the state wires are ordinary four-
transistor NAND/NOR gates with a fifth transistor which can disconnect the ap-

6



3.3 The Firing Circuit 3 CIRCUIT DESIGN

propriate half of the gate from the power rail.

The “active” behavior each of these five state-manipulating gates can be described
as follows, and are a direct implementation of the firing actions (A1)-(A3):

• The LSN[ZeroOrTwo] state wire is emptied (pulled low) when the GasP mod-
ule fires and the MSN[ZeroOrDone] wire is full at firing time.

• The LSN[ZeroOrDone] state wire is emptied (pulled low) when the GasP
module fires and the MSN[ZeroOrDone] wire is empty at firing time.

• The MSN[ZeroOrDone] state wire is filled (pulled high) when the GasP mod-
ule fires and the MSN[ZeroOrTwo] wire is empty at firing time.

• The MSN[ZeroOrTwo] state wire is filled (pulled high) when the GasP module
fires and both MSN wires are full at firing time.

• The MSN[ZeroOrTwo] state wire is emptied (pulled low) when the GasP mod-
ule fires and the MSN[ZeroOrTwo] wire is full at firing time.

3.2.1 Delays

Note that whenever the state of a wire from a given state (LSN or MSN) is used to
decide whether to drain or fill a wire in that same stage, the state used to make the
decision must be delayed by 2-4 gate delays. This ensures that the result of a firing
action is not observed until after the fire pulse has subsided.

3.2.2 Keepers

In addition to the behaviors which actively drive the state wires to particular val-
ues, the five state wire drivers also include a keeper action or “passive” behavior.
This is most easily understood by analogy to a game of catch between two people:
whoever catches the ball is responsible for holding it until they decide to throw it
again. Likewise, whichever side of the wire decides to raise it must first watch for
it to be lowered and hold it low until that time comes. The fact that the gate which
drives a wire high bears the responsibility of holding it low can be counterintuitive
at first.

The situation becomes more complex when a particular GasP module both raises
and lowers a given state wire, as happens with MSN[ZeroOrTwo]. In this case, the
holding condition involves watching not just the wire being held, but also the other
wires whose states play a part in the decision to raise it.

3.3 The Firing Circuit

In 4/2 GasP the fire signal is a high-going pulse driven by a single stage of
logic. This single stage of of logic computes the enabling condition. In this
case, that condition (E1) is equivalent to “enable when either MSN[ZeroOrDone]

or MSN[ZeroOrTwo] is empty and both of LSN[ZeroOrDone] and LSN[ZeroOrTwo]

are full.”

A circuit which computes this condition is shown below:

7



4 RESULTS

Note the additional disable signal, which can be used to suspend the operation of
the firing circuit. This will be used during loading of the counter.

We expect that in the case where performance matters the most, it will be the fall
of one of the MSN signals (usually MSN[ZeroOrDone]) which triggers the firing;
therefore we position the two PMOS transistors driven by the MSN signals farthest
from the rail (closest to the output).

4 Results

A SPICE netlist was extracted from the schematics in Electric, including transistor
sizes. This netlist was then simulated using Synopsys Nanosim and the TSMC
90nm device libraries.

Each of the plots below shows the behavior of a six bit counter using twelve
graphs. The first graph shows the fire signal of the most significant GasP mod-
ule (the module whose MSN is fixed at Done). The next graph after that shows
two waveforms, one for each of the state wires on the less significant side of the
GasP module from the previous graph. The remaining ten graphs each repeat this
pattern, in descending order of bit significance.

When printed in color, the fire signals appear in red, the ZeroOrTwo signals ap-
pear in blue, and the ZeroOrDone signals appear in green.

8



4.1 Plot 1 4 RESULTS

4.1 Plot 1

Plot 1 shows the counter with a starting
value of 32, or 6'b100000.

The two vertical dashed lines mark the
distance in time between the firing of
the fifth and first GasP modules. The
time interval between these firings is
417ps, giving a borrow rate of 105ps per
bit.

The sequence of states is approximately:

D100000

D020000

DD20000

DD12000

DD11200

DD11120

DD11112

9



4.2 Plot 2 4 RESULTS

4.2 Plot 2

Plot 2 shows the counter with a start-
ing value of 36, or 6'b100100. Note the
concurrency in the borrowing; the fifth
bit borrows from the sixth bit simulta-
neously with the second bit borrowing
from the third.

The sequence of states is approximately:

D100100

D020020

DD12012

DD11212

10



4.3 Plot 3 4 RESULTS

4.3 Plot 3

Plot 3 shows the counter with a starting
value of 16, or 6'b010000. Because the
imaginary “seventh bit” holds a fixed
value of Done, the sixth bit will fail to
borrow from it (and become Done) at ap-
proximately the same time that the fifth
bit is borrowed from and becomes zero.
This means that the GasP module be-
tween the fifth and sixth bits sees the
two halves of its enabling condition oc-
cur at the same time.

The sequence of states is approximately:

D010000

DD02000

DDD1200

DDD1120

DDD1112

11


	The Counter
	Requirements

	Encodings
	Correctness Considerations
	Performance Considerations
	State Encoding for the Counter

	Circuit Design
	One Bit
	The GasP Module
	Delays
	Keepers

	The Firing Circuit

	Results
	Plot 1
	Plot 2
	Plot 3


