
Generating Heap-bounded Programs in a
Functional Setting?

Walid Taha1, Stephan Ellner1, and Hongwei Xi2

1 Rice University, Houston, TX, USA
{taha,besan}@cs.rice.edu

2 Boston University, Boston, MA, USA
hwxi@cs.bu.edu

Abstract. High-level programming languages offer significant expres-
sivity but provide little or no guarantees about resource utilization.
Resource-bounded languages provide strong guarantees about the run-
time behavior of programs but often lack mechanisms that allow pro-
grammers to write more structured, modular, and reusable programs. To
overcome this basic tension in language design, this paper advocates tak-
ing into account the natural distinction between the development plat-
form and the deployment platform for resource-sensitive software.
To illustrate this approach, we develop the meta-theory for GeHB, a two-
level language in which first stage computations can involve arbitrary
resource consumption, but the second stage can only involve functional
programs that do not require new heap allocations. As an example of
a such a second-stage language we use the recently proposed first-order
functional language LFPL. LFPL can be compiled directly to malloc-
free, imperative C code. We show that all generated programs in GeHB
can be transformed into well-typed LFPL programs, thus ensuring that
the results established for LFPL are directly applicable to GeHB.

1 Introduction

Designers of embedded and real-time software attend not only to functional spec-
ifications, but also to a wider range of concerns, including resource consumption
and integration with the physical world. Because of the need for strong a-priori
guarantees about the runtime behavior of embedded software, resource-bounded
languages (c.f. [19, 8, 9, 28, 29]) generally trade expressivity for guarantees about
runtime behavior. Depending on the kind of guarantees required, a resource-
bounded language may have to deprive the programmer from useful abstraction
mechanisms such as higher-order functions, dynamic data structures, and gen-
eral recursion. We argue that this trade-off can be avoided if the language itself
can express the distinction between computation on the development platform
and computation on the deployment platform. Such a language could provide a
bridge between traditional software engineering techniques on one side, and the
specific demands of the embedded software domain on the other.
? Supported by NSF grants ITR-0113569, CCR-0224244 and CCR-0229480.

LFPL: Bounded Space and Functional In-place Update Recently, Hof-
mann proposed the resource-bounded programming language LFPL [8, 10], a
first-order functional language with constructors and destructors for dynamic
data structures. The type system of LFPL ensures that all well-typed programs
can be compiled into malloc-free, imperative C code. [8]. Without any special
optimizations, the performance of resulting programs is competitive with the
performance of programs generated by the OCaml native code compiler.

The essential idea behind LFPL is the use of a linear type system that ensures
that references to dynamically allocated structures are not duplicated at runtime.
The key mechanism to achieving this is ensuring that certain variables in the
source program are used at most once (linearity). Constructors for dynamic
structures carry an extra field that can be informally interpreted as a capability.
The following is an implementation of insertion sort over lists in LFPL [10]: 3

let rec insert(d,a,l) =
case l of
nil -> cons(a, nil) at d

| cons(b,t) at d’ -> if a < b
then cons(a, cons(b, t) at d’) at d
else cons(b, insert(d’,a, t)) at d

let rec sort(l) =
case l of
nil -> nil

| cons(a,t) at d -> insert(d, a, sort(t))

The main function, sort, takes a list l and returns a sorted list. Using pattern
matching (the case-statement), the function checks if the list is empty. If so, the
empty list is returned. If the list is non-empty, the constructor cons for the list
carries three values: the head a, the tail t, and a capability d for the location
at which this list node is stored. Note that the capability d is passed to insert,
along with the head of the list and the result of recursively calling sort on the
tail. The type system ensures that well-typed programs do not duplicate such
capabilities. This is achevied by ensuring that a variable like d is not used more
than once.

It has been shown that any LFPL program can be compiled to a C program
that requires no heap allocation, and therefore no dynamic heap management
[8, 10]. Instead of allocating new space on the heap, constructor applications are
implemented by modifying heap locations of previously allocated data structures.

Expressivity The example above points out a common limitation of resource-
bounded languages. In particular, we often want to parameterize sorting func-
tions by a comparison operation that allows us to reuse the same function to
sort different kinds of data (c.f. [14]). This is especially problematic with larger
and more sophisticated sorting algorithms, as it would require duplicating the
source code for such functions for every new data structure. In practice, this can
also cause code duplication, thus increasing maintenance cost.
3 We use an OCaml-like concrete syntax for LFPL.

Such parameterization requires higher-order functions, which are usually ab-
sent from resource-bounded languages: implementing higher-order functions re-
quires runtime allocation of closures on the heap. Furthermore, higher-order
functions are expressive enough to encode dynamically allocated data structures
such as lists.

Contributions A key observation behind our work is that even when targeting
resource-bounded platforms, earlier computations that lead to the construction
of such programs are often not run on resource-bounded development platforms.
Commercial products such as National Instrument’s LabVIEW Real-Time [20]
and LabVIEW FPGA [21] already take advantage of such stage distinctions.
The question this paper addresses is how to reflect this reality into the design
of a language that gives feedback to the programmer as soon as possible as to
whether the “final product” is resource-bounded or not.

We demonstrate that ideas from two-level and multi-stage languages can be
used to develop natural, two-stage extensions of a resource-bounded language.
The focus of this paper is on developing the meta-theory for GeHB, a statically-
typed two-stage language that extends LFPL. The resulting language is more
expressive and takes advantage of the realistic assumption of having two dis-
tinct stages of computation. In the first stage, general higher-order functions
can be used. In the second (or “LFPL”) stage, no dynamic heap allocation is
allowed. Type-checking a GeHB program (which happens before the first stage)
statically guarantees that all second-stage computations are heap-bounded. This
strong notion of static typing requires that we type check not only first-stage
computations, but also templates of second-stage programs. Compared to tra-
ditional statically-typed multi-stage languages, the technical challenge lies in
ensuring that generated programs satisfy the linearity conditions that Hofmann
defines for LFPL. While a direct combination of a multi-stage language and
LFPL does not work, we show how this problem can be addressed using the re-
cently proposed notion of closed types [4, 7]. Finally, we show that all generated
programs can be transformed into well-typed LFPL programs, thus ensuring
that the results established for LFPL are directly applicable to GeHB.

The results presented here are a step toward our long-term goal of develop-
ing an expressive statically-typed functional language that can be used in the
challenging context of embedded systems [27].

Organization of this Paper Section 2 introduces the basic concepts of general-
purpose multi-stage programming, and points out a technical problem in the
direct combination of a multi-stage type system with the type system of LFPL.
Section 3 formalizes the type system and semantics of GeHB, and presents a
type preservation result for first-stage evaluation. The section also shows that
second-stage values determine LFPL programs and that results about LFPL
apply to GeHB. Section 4 illustrates programming in GeHB and the impact of
typing rules from the programmer’s perspective. Sections 5 and 6 discuss various
aspects of the work and conclude.

2 Multi-Stage Programming

Multi-stage languages [22, 13, 24] provide light-weight, high-level annotations
that allow the programmer to break down computations into distinct stages.
This facility supports a natural and algorithmic approach to program genera-
tion, where generation occurs in a first stage, and the synthesized program is
executed during a second stage. The annotations are a small set of constructs for
the construction, combination, and execution of delayed computations. Under-
lying program generation problems, such as avoiding accidental variable capture
and the representation of programs, are completely hidden from the programmer
(c.f. [24]). The following is a simple program written in the multi-stage language
MetaOCaml [17]:

let rec power n x = if n=0 then <1> else <~x * ~(power (n-1) x)>
let power3 = <fun x -> ~(power 3 <x>)>

Ignoring the staging annotations (brackets <e> and escapes ~e) 4, the above code
is a standard definition of a function that computes xn, which is then used to
define the specialized function x3. Without staging, the last step just produces a
closure that invokes the power function every time it gets a value for x. The effect
of staging is best understood by starting at the end of the example. Whereas a
term fun x -> e x is a value, an annotated term <fun x -> ~(e <x>)> is not.
Brackets indicate that we are constructing a future stage computation, and an
escape indicates that we must perform an immediate computation while building
the bracketed computation. The application e <x> has to be performed even
though x is still an uninstantiated symbol. In the power example, power 3 <x>
is performed immediately, once and for all, and not repeated every time we
have a new value for x. In the body of the definition of the function power, the
recursive application of power is escaped to ensure its immediate execution in the
first stage. Evaluating the definition of power3 produces <fun x -> x*x*x*1>.

General-purpose multi-stage languages provide strong safety guarantees. For
example, a program generator written in such a language is not only type-safe
in the traditional sense, but the type system also guarantees that any generated
program will be type safe. Traditionally, multi-stage languages were used for
quantitative benefits (speed-up). In this work, the benefit is more qualitative,
in that it allows programmers to write programs that previously could not be
expressed in a resource-bounded language.

A Naive Approach to Generating LFPL Programs Combining the type
systems for multi-stage languages and LFPL is not trivial. In particular, it cannot
be achieved by simply treating level 0 variables as non-linear variables (that
can be used multiple times). The level of a term e is 0 if it is executed in
the first stage, or 1 if it is executed in the second. A term is at level 0 by
default, unless it occurs (unescaped) inside brackets. For example, consider the
expression <fun x -> ~(power 3 <x>)>. The use of power is surrounded by
4 In the implementation of MetaOCaml, dots are used around brackets and before

escapes to disambiguate the syntax.

one set of brackets and one escape, therefore power is used at level 0. The use
of x is surrounded by two sets of brackets and one escape, and therefore occurs
at level 1. Similarly, the binding of x occurs at level 1. Treating level 0 variables
as non-linear and level 1 variables as linear is problematic for two reasons:

1. Some level 0 variables must be treated linearly: Variables bound at level 0 can
refer to computations that contain free level 0 variables. A simple example
is the following:

<fun x -> ~((fun y -> <(~y,~y)>) <x>)>

In this term, x is bound at level 1, while y is bound at level 0. Note that x
is used only once in the body of the term, and is therefore linear. However,
if we evaluate the term (performing the first stage computation) we get the
term

<fun x -> (x,x)>

where x is no longer used linearly. This occurs because y was not used linearly
in the original term. Thus, one must also pay attention to linearity even for
level 0 variables such as y.

2. Not all level 1 variables need to be linear: Hofmann’s type system is param-
eterized by a signature of function names. Such functions can be used many
times in an LFPL program. A natural way to integrate such function names
into our formulation is to treat them as non-linear variables. 5

Ignoring the first point leads to an unsound static type system: it fails to ensure
that generated programs require no heap allocation in the second stage. Ignoring
the second leads to an overly restrictive type system.

3 GeHB: Generating Heap Bounded Programs

The syntax of the subset of GeHB that we study is defined as follows:

e ::= i | x | λx.e | e(e) | let x = e in e | (e, e) | π1 e | π2 e | if e then e else e |
let rec f(x) = e in e | [e] | let [x] = e in e | 〈e〉 | ˜e | nil | cons(e, e)at e |
case e of nil → e ′|′ cons(x, y)at z → e

The first line introduces integers, variables, lambda-abstractions, applications,
local variable bindings, pairs, and conditionals. The second line introduces re-
cursive definitions, as well as the closedness annotations [e] and let [x] = e0 in e1.
(We read [e] as “closed of e”.)

Intuitively, closedness annotations are assertions reflected in the type and
checked by the type system. The first annotation instructs the type checker
5 While Hofmann’s type system for LFPL does not include an explicit typing rule for

function definitions, it is essential that functions not introduce new resources when
they are applied. A natural way to achieve this, as we show here, is for the body of
a function definition to be typed in an environment where only non-linear variables
are visible.

to ensure that the value resulting from evaluating e can be safely duplicated,
without leading to any runtime heap allocation. If e can be type-checked as
such, then the term [e] is assigned a special type. By default, variables will be
considered linear. The second annotation allows the programmer to promote the
value resulting from evaluating e0 to a special type environment for non-linear
variables, if the type type of e0 indicates that it can be safely duplicated. The
construct then binds this value to x, and makes x available for an arbitrary
number of uses in e1. The syntax for these constructs was inspired by the syntax
for S4 modal logic used by Davies and Pfenning [7].

Next in the definition of the syntax are brackets and escapes, which have been
described in the previous section. The remaining constructs are constructors and
pattern matching over lists. We avoid artificial distinctions between the syntax
of terms that will be executed at level 0 and terms executed at level 1. As much
as possible, we delegate this distinction to the type system. This simplifies the
meta-theory, and allows us to focus on typing issues.

Type System The syntax of types for GeHB is defined as follows:

t ::= int | t → t | t ∗ t | � | [t] | 〈t〉 | list(t)

The first three types are standard. The type � (read “diamond”) can be intu-
itively interpreted as the type of the capability for each heap-allocated value.
The type [t] (read “closed of t”) indicates that a value of that type can be safely
duplicated. The semantics for this type constructor was inspired by both the
linear type system of LFPL and the closed type constructor used for type-safe
reflective and imperative multi-stage programming [24, 18, 4]. The type 〈t〉 (read
“code of t”) is the type of second-stage computations and is associated with all
generated LFPL programs. The type list(t) is an example of a dynamic data
structure available in the second stage.

Different types are valid at each level:

n

` int

0

` t0
0

` t1
0

` t0 → t1

n

` t0
n

` t1
n

` t0 ∗ t1
1

` �

0

` t
0

` [t]

1

` t
0

` 〈t〉

1

` t
1

` list(t)

We will write write tn for a type t when
n

` t is derivable.
Two kinds of typing environments will be used. The first holds values that can

be safely duplicated, whereas the second holds linear values. The environments
will have the following form:

Γ ::= ∅ | Γ, x : (t0, 0) | Γ, x : (t1 → t1, 1) and ∆ ::= ∅ | ∆, x : (tn, n)

Thus, all environments carry mappings from variable names to pairs of types and
binding levels. In Γ , for any given variable binding, if the binding level is 0 then
the type can be any type valid at level 0. If the binding level is 1, however, only
functions bound at level 1 are allowed. In particular, the only use of Γ at level
1 is to express that functions defined at level 1 (using let rec) can be safely used

Γ ; ∆
n
` i : int

(INT)
Γ (x) = (t, 0)

Γ ; ∆
0
` x : t

(VARN)

∆(x) = (t, n)

Γ ; ∆
n
` x : t

(VARL)

0
` t0 Γ ; ∆, x : (t0, 0)

0
` e : t1

Γ ; ∆
0
` λx.e : t0 → t1

(LAM)

Γ ; ∆0

0
` e0 : t1 → t2 Γ ; ∆1

0
` e1 : t1

Γ ; ∆0, ∆1

0
` e0(e1) : t2

(APP)
Γ (f) = (t0 → t1, 1) Γ ; ∆

1
` e : t0

Γ ; ∆
1
` f(e) : t1

(APPF)

Γ ; ∆0

n
` e0 : t0 Γ ; ∆1, x : (t0, n)

n
` e1 : t1

Γ ; ∆0, ∆1

n
` let x = e0 in e1 : t1

(LET)
Γ ; ∆0

n
` e0 : int Γ ; ∆1

n
` e1 : t Γ ; ∆1

n
` e2 : t

Γ ; ∆0, ∆1

n
` if e0 then e1 else e2 : t

(IF)

n
` t0, t1 Γ, f : (t0 → t1, n); x : (t0, n)

n
` e0 : t1 Γ, f : (t0 → t1, n); ∆

n
` e1 : t2

Γ ; ∆
n
` let rec f(x) = e0 in e1 : t2

(REC)

Γ ; ∅
0
` e : t

Γ ; ∆
0
` [e] : [t]

(CLOS)
Γ ; ∆0

0
` e0 : [t0] Γ, x : (t0, 0); ∆1

0
` e1 : t1

Γ ; ∆0, ∆1

0
` let [x] = e0 in e1 : t1

(LETC)

Γ ; ∆
n
` e : t1 ∗ t2

Γ ; ∆
n
` πi e : ti

(PI)
Γ ; ∆0

n
` e0 : t0 Γ ; ∆1

n
` e1 : t1

Γ ; ∆0, ∆1

n
` (e0, e1) : t0 ∗ t1

(PAIR)
Γ ; ∆

1
` e : t

Γ ; ∆
0
` 〈e〉 : 〈t〉

(BRAC)

Γ ; ∆
0
` e : 〈t〉

Γ ; ∆
1
` ˜e : t

(ESC)
Γ ; ∆, x : (t0, 1), y : (t0, 1)

1
` e : t1 t0 ∈ {u ::= int | u ∗ u}

Γ ; ∆, x : (t0, 1)
1
` e[y := x] : t1

(CONTR)

1
` t

Γ ; ∆
1
` nil : list(t)

(NIL)
Γ ; ∆0

1
` e0 : t Γ ; ∆1

1
` e1 : list(t) Γ ; ∆2

1
` e2 : �

Γ ; ∆0, ∆1, ∆2

1
` cons(e0, e1)at e2 : list(t)

(CONS)

Γ ; ∆0

1
` e0 : list(t0) Γ ; ∆1

1
` e1 : t1 Γ ; ∆1, x : (t0, 1), y : (list(t0), 1), l : (�, 1)

1
` e2 : t1

Γ ; ∆0, ∆1

1
` case e0 of nil → e1 | cons(x, y)at l → e2 : t1

(CASE)

Fig. 1. Type System for GeHB

multiple times in the body of a program. For ∆, the situation is straightforward.
A valid combined environment Γ ;∆ is a pair Γ and ∆ such that any variable x
either occurs exactly once in one of them or occurs in neither.

We will write Γn (and similarly ∆n) for a Γ where all bindings are at level n.

The judgment Γ ;∆
n

` e : t presented in Figure 1 defines the type system for
GeHB. The environment Γ is standard whereas the environment ∆ is linear.
This distinction manifests itself in the type system as a difference in the way
these environments are propagated to subterms. As a simple example, consider
the rule for application e0(e1). The environment Γ is used in type checking both
terms. In contrast, the linear environment ∆ is split into two parts by pattern
matching it with ∆0 and ∆1, and exactly one of these two parts is used in type
checking each of the subterms e0 and e1.

Proposition 1. 1. If Γ ;∆
n

` e : t is derivable, then so is
n

` t.

2. If Γ ;∆, x : (t0, 0)
m

` e : t′ is derivable, then x occurs at most once in e.

The first eight rules are essentially standard. Integers are available at both
levels. Two rules are needed for variables, one for the non-linear environment
(VARN) and one for the linear environment (VARL). Note that the variable rules
require that the binding level be the same as the level at which the variable is
used. Additionally, the (VARN) rule only applies at level 0. We can only lookup
a level 1 variable bound in Γ if it is used in an application at level 1 (APPF).
Lambda abstractions are mostly standard, but they are only allowed at level 0.

The rule for function definitions (REC) makes the newly defined function
available as a non-linear variable. To make sure that this is sound, however, we
have to require that the body e0 of this definition be typable using no linear
variables except for the function’s parameter.

The rule for close (CLOS) uses a similar condition: a closedness annotation
around a term e is well typed only if e can be typed without reference to any
linear variables introduced by the context. The rule for let-close (LETC) is the
elimination rule for the closed type constructor [t]. The rule allows us to take
any value of closed type and add it to the non-linear environment Γ .

The next two rules for projection and pairing are essentially standard. The
rules for brackets and escapes are standard in multi-stage languages. The re-
maining rules define conditions for terms that are valid only at level 1, and come
directly from LFPL.

Lemma 1 (Weakening). If Γ
n

` e : t then

1. Γ, x : (t′, n′);∆
n

` e : t, and

2. Γ ;∆, x : (t′, n′)
n

` e : t

Lemma 2 (Substitution).

1. If Γ ;∆0

0

` e1 : t1 and Γ ;∆1, x : (t1, 0)
n

` e2 : t2 then Γ ;∆0,∆1

n

` e2[x := e1] :
t2.

2. If Γ ; ∅
0

` e1 : t1 and Γ, x : (t1, 0);∆1

n

` e2 : t2 then Γ ;∆1

n

` e2[x := e1] : t2.

Operational Semantics for First Stage The judgment e0
n
↪→ e1 presented

in Figure 2 defines the operational semantics of GeHB programs. Even though
the evaluation function used in this paper uses an index n, it is not defining how
evaluation occurs during both stages. Rather, it defines how the mix of both
level 0 and level 1 terms are evaluated during the first stage. When the index n
is 0 we say we are evaluating e0, and when the index is 1 we say we are rebuilding
this term. Note that this judgment defines only what gets done during the first
stage of execution, namely, the generation stage. Execution in the second stage
is defined in terms of Hofmann’s semantics for LFPL terms (Section 3).

i
n
↪→ i x

1
↪→ x λx.e

0
↪→ λx.e

e0
0

↪→ λx.e2 e1
0

↪→ e3 e2[x := e3]
0

↪→ e4

e0(e1)
0

↪→ e4

e0
1

↪→ e2 e1
1

↪→ e3

e0(e1)
1

↪→ e2(e3)

e0
n
↪→ e2 e1

n
↪→ e3

(e0, e1)
n
↪→ (e2, e3)

e
0

↪→ (e1, e2)

πi(e)
0

↪→ ei

e0
1

↪→ e1

πi(e0)
1

↪→ πi(e1)

e0
0

↪→ e2 e1[x := e2]
0

↪→ e3

let x = e0 in e1
0

↪→ e3

e0
1

↪→ e2 e1
1

↪→ e3

let x = e0 in e1
1

↪→ let x = e2 in e3

e0
0

↪→ i i 6= 0 e1
0

↪→ e3

if e0 then e1 else e2
0

↪→ e3

e0
0

↪→ 0 e2
0

↪→ e3

if e0 then e1 else e2
0

↪→ e3

e0
1

↪→ e3 e1
1

↪→ e4 e2
1

↪→ e5

if e0 then e1 else e2
1

↪→ if e3 then e4 else e5

e1[f := let rec f(x) = e0 in λx.e0]
0

↪→ e2

let rec f(x) = e0 in e1
0

↪→ e2

e0
1

↪→ e2 e1
1

↪→ e3

let rec f(x) = e0 in e1
1

↪→ let rec f(x) = e2 in e3

e0
n
↪→ e1

[e0]
n
↪→ [e1]

e0
0

↪→ [e3] e1[x := e3]
0

↪→ e2

let [x] = e0 in e1
0

↪→ e2

e0
1

↪→ e2 e1
1

↪→ e3

let [x] = e0 in e1
1

↪→ let [x] = e2 in e3

e0
1

↪→ e1

〈e0〉
0

↪→ 〈e1〉

e0
0

↪→ 〈e1〉

˜e0
1

↪→ e1 nil
1

↪→ nil

e0
1

↪→ e3 e1
1

↪→ e4 e2
1

↪→ e5

cons(e0, e1)at e2
1

↪→ cons(e3, e4)at e5

e0
1

↪→ e3 e1
1

↪→ e4 e2
1

↪→ e5

case e0 of

{
nil → e1

′|′ cons(x, y)at z → e2

1
↪→ case e3 of

{
nil → e4

′|′ cons(x, y)at z → e5

Fig. 2. Operational Semantics of First Stage in GeHB

Lemma 3 (Type Preservation). If Γ 1,∆1
n

` e : t and e
n
↪→ e′ then Γ 1,∆1

n

`
e′ : t.

Generated Programs as LFPL Programs Hofmann’s type system does not
have an explicit rule for recursive definitions. Instead, the system assumes a
signature of top-level functions under which programs are typable. It remains
for us to show that programs generated by GeHB can be converted into LFPL
programs. The key observations needed to make this connection are as follows:

1. A code value 〈e〉 generated by evaluating a GeHB program is free of escapes
and level 0 terms.

2. The typing of let rec ensures that all such declarations can be lifted to top-
level.

3. The result of lifting is a sequence of function declarations ending with a
proper LFPL term.

In what follows we justify these claims.

Code Values are Escape Free To establish this property it is simpler to work with
a superset of typed terms called expression families [24, 26]. Expression families
classify terms based on appropriateness for appearing at a certain level:

en ∈ En ::= i | x | en(en) | let x = en in en | (en, en) | π1 en | π2 en |
if en then en else en | let rec f(x) = en in en

e0 ∈ E0 += λx.e0 | [e0] | let [x] = e0 in e0 | 〈e1〉
e1 ∈ E1 += ˜e0 | nil | cons(e1, e1)at e1 | case e1of nil → e1 ′|′ cons(x, y)at z → e1

The first line defines expressions that can be associated with either level. The
second and third definitions extend the set of terms that can be associated with
levels 0 and 1, respectively. Values are defined similarly:

v ∈ V0 ::= i | λx.e0 | (v, v) | [v] | 〈g〉
g ∈ V1 ::= i | x | g(g) | let x = g in g | (g, g) | π1 g | π2 g |

if g then g else g | let rec f(x) = g in g

nil | cons(g, g)at g | case g of nil → g ′|′ cons(x, y)at z → g

For level 0 values, the first three cases are standard. Values with the closed code
constructor at the head must carry a level 0 value (thus [t] is a strict constructor).
Code values must carry a subterm that is a level 1 value. Level 1 values are level
1 expressions that do not contain escapes.

Proposition 2. 1. Vn ⊆ En, 2. Γ ;∆
n

` e : t implies e ∈ En, and 3. en n
↪→ e′

implies e′ ∈ Vn.

Function Declarations can be Lifted The subset of GeHB terms corre-
sponding to LFPL terms is easily defined as the following subset of V1: 6

h ∈ H ::= i | x | h(h) | let x = h in h | (h, h) | π1 h | π2 h | if h then h else h
nil | cons(h, h)at h | case h of nil → h ′|′ cons(x, y)at z → h

A term h is typable in our system as fi : (t1i → t′1i , 1); ∅
1

` h : t if and only
if it is typable as ∅ ` h : t in LFPL’s type system under a function signature
fi : t1i → t′1i .

Lifting recursive functions can be performed by a sequence of reductions car-
ried out in the appropriate context. Declaration contexts are defined as follows:

D ∈ D ::= [] | let rec f(x) = D[h] in D

6 The LFPL calculus has no explicit let construct, but let has no effect on heap usage.

We will show that for every term g there is a unique term of the form D[h]. The
essence of the argument is the following partial function from V1 to V1:

i 7→ i x 7→ x

g1 7→ D1[h1] g2 7→ D2[h2]
g1(g2) 7→ D1[D2[h1(h2)]]

g1 7→ D1[h1] g2 7→ D2[h2] x 6∈ FV (D2)
let x = g1 in g2 7→ D1[D2[let x = h1 in h2]]

g1 7→ D1[h1] g2 7→ D2[h2]
(g1, g2) 7→ D1[D2[(h1, h2)]]

g 7→ D[h]
πi g 7→ D[πi h]

g1 7→ D1[h1] g2 7→ D2[h2] g3 7→ D3[h3]
if g1 then g2 else g3 7→ D1[D2[D3[if h1 then h2 else h3]]]

g1 7→ D1[h1] g2 7→ D2[h2]
let rec f(x) = g1 in g2 7→ let rec f(x) = D1[h1] in D2[h2]

nil 7→ nil

g1 7→ D1[h1] g2 7→ D2[h2] g3 7→ D3[h3]
cons(g1, g2)at g3 7→ D1[D2[D3[cons(h1, h2)at h3]]]

g1 7→ D1[h1] g2 7→ D2[h2] g3 7→ D3[h3] x, y, z 6∈ FV (D2)
case g1 of nil → g2

′|′ cons(x, y)at z → g3

7→ D1[D2[D3[case h1 of nil → h2
′|′ cons(x, y)at z → h3]]]

The definition above uses the Barendregt convention [1] of assuming that all
bound variables are distinct in terms such as D1[h1] and D2[h2]. This allows
us to construct terms such as D1[D2[h1(h2)]] without introducing accidental
variable capture.

Proposition 3. The following properties capture the basic features of lifting and
declaration contexts:

1. g 7→ e implies that there is a unique pair D and h such that D[h] = e.

2. Γ ;∆
1

` D[e] : t implies that there exists a Γ ′ = fi : (t1i → t′1i , 1) such that

Γ, Γ ′;∆
1

` e : t. Furthermore, if Γ, Γ ′;∆
1

` e′ : t, then Γ ;∆
1

` D[e′] : t.
Finally, x ∈ dom(∆) implies x 6∈ FV (D).

3. Γ ;∆
1

` g : t and g 7→ e implies Γ ;∆
1

` e : t. (Type-preservation for lifting.)

4. Γ ;∆
1

` g : t implies there is an e such that g 7→ e. (Totality for lifting.)

Proof. Part 1 is by a simple induction over the lifting derivation. Part 2 is by
induction over the structure of D, and noting that let recs only extend Γ . Part 3
is by induction over the height of the lifting derivation, using the first fact in Part
2 as well as weakening. Part 4 is by induction over the typing derivation, and
noting that the only risk to totality is the side conditions on free variables. These
side conditions only arise with binding constructs, namely, let and case. For both
constructs, the last observation in Part 2 implies that these side conditions hold.

Theorem 1 (Generated Programs are LFPL Programs).

Whenever ∅;xj : (�, 1)
0

` e : 〈t〉 and e
0

↪→ e′, then

– there exists a term g such that 〈g〉 = e′,
– there exists D and h such that g 7→ D[h],

– there exists Γ ′ = fi : (t1i → t′1i , 1) such that Γ ′;xj : (�, 1)
1

` h : t, and
– the LFPL judgment xj : � ` h : t is derivable under signature fi : t1i → t′1i .

4 Parameterized Insertion Sort in GeHB

GeHB allows us to parameterize the insertion sort function presented in the
introduction with a comparison operator. This generalization takes advantage
of both staging and closedness annotations. Intuitively, this function will take
as argument a staged comparison function, a second-stage list computation, and
returns a second-stage list computation. Formally, the type of such a function
would be:

(<A>*<A> -> <int>) * <list(A)> -> <list(A)>

for any given type A. But because this function will itself be a generator of func-
tion declarations, and the body of a function declaration cannot refer to any
linear variables except for its arguments, we will need to use closedness annota-
tions to express the fact that we have more information about the comparison
operator. In particular, we require that the comparison operation not be allowed
to allocate second-stage heap resources. The closed type constructor [...] al-
lows us to express this requirement in the type of the generalized sort function
as follows:

[<A>*<A> -> <int>] * <list(A)> -> <list(A)>

The staged parameterized sort function itself can be defined as follows:

let rec sort_gen(f,ll) =
let [f’] = f in
<let rec insert(d,a,l) =

case l of
nil -> cons(a, nil) at d

| cons(b,t) at d’ -> if ~(f’(<a>,))
then cons(a, cons(b, t) at d’) at d
else cons(b, insert(a, d’, t)) at d

in let rec sort(l) =
case l of
nil -> nil

| cons(a,t) at d -> insert(d, a, sort(t))
in sort(~ll)>

in sort_gen([fun (x,y) -> <fst(~x) > fst(~y)>],
<cons((3,33), cons((100,12), cons((44,100),

cons((5,13),nil) at d4) at d3) at d2) at d1>)

Without the staging and the closedness annotations, this definition is standard.
We assume that we are given four free heap locations d1 to d4 to work with.
As illustrated in Section 2, the staging annotations separate first stage compu-
tations from second stage ones. Closedness annotations appear in two places
in the program. Once on the second line of the program, and once around
the first argument to the sort_gen function at the end of the program. The
closedness annotation at the end of the program asserts that the program frag-
ment fun (x,y) -> <fst(~x) > fst(~y)> is free of operations that allocate
resources on the heap during the second stage. Because function parameters are
linear, and function definitions can only use their formal parameters, the vari-
able f cannot be used in the body of the (inner) declaration of insert. Knowing
that this variable has closed type, however, allows us to use the construction
let [f’]=f to copy the value of f to the non-linear variable f’, which can
thereafter be used in the body of insert.

Evaluating the GeHB program above generates the following code fragment:

<let rec insert(d,a,l) =
case l of nil -> cons(a, nil) at d

| cons(b,t) at d’ -> if fst(a) > fst(b)))
then cons(a, cons(b, t) at d’) at d
else cons(b, insert(a, d’, t)) at d

in let rec sort(l) =
case l of nil -> nil

| cons(a,t) at d -> insert(d, a, sort(t))

in sort(cons((3,33), cons((100,12), cons((44,100),
cons((5,13),nil) at d4) at d3) at d2) at d1)>

The generated program is a valid LFPL program, and in this particular case,
no lifting of function declarations is required. Note also that because higher-
order functions are only present in the first stage, there is no runtime cost for
parameterizing insert with respect to the comparison operator f. In particular,
the body of the comparison operation will always be inlined in the generated
sorting function.

5 Discussion

An unexpected finding from the study of GeHB is that generating LFPL pro-
grams requires the use of a primarily linear type system in the first stage. This is
achieved using a single type constructor [t] that captures both linearity [3] and
closedness [4, 24]. Both notions can separately be interpreted as comonads (c.f.
[3] and [2]). The type constructor [t] seems novel in that it compacts two comon-
ads into one constructor. From a language design perspective, the possibility of
combining two such comonads into one is attractive, because it reduces annota-
tions associated with typing programs that use these comonads. A natural and
important question to ask is whether the compactness of [t] is an accident or
an instance of a more general pattern. It will be interesting to see whether the
useful composability of monads translates into composability of comonads.

GeHB provides new insights about multi-stage languages. In particular, we
find that the closed type constructor is useful even when the language does not
support reflection (the run construct). Because the notion of closedness is self-
motivated in GeHB, we are hopeful that it will be easy to introduce a construct
like run to this setting. With such a construct, not only will the programmer be
able to construct computations for an embedded platform, but also to execute
and receive results of such computations. An important practical problem for
general multi-stage programming is code duplication. In the language presented
here, no open code fragments can be duplicated. It will be interesting to see
if, in practice, a linear typing approach could also be useful to address code
duplication in multi-stage languages.

Czarnecki et al. [6] describe a template-based system for generating embedded
software for satellite systems. In this approach programs are generated automat-
ically from XML specifications and domain-specific libraries written in languages
like Ada and Fortran. Their system was designed with the explicit goal of produc-
ing human-readable code and relies on the programmer to verify its correctness.
In contrast, our goal is to design languages that let programmers reason about
generated programs while they are reading and writing the generator. If enough
guarantees can be made just by type checking the generator, then we know
that the full family of programs produced by this generator is well-behaved. The
contributions of GeHB and Czarnecki et al. are orthogonal and compatible.

6 Conclusions and Future Work

We have presented the two-level language GeHB that offers more expressivity
than LFPL and at the same time offers more resource guarantees than general-
purpose multi-stage languages. The technical challenge in designing GeHB lies
in finding the appropriate type system. The development is largely modular, in
the sense that many results on LFPL can be reused. While we find that a naive
combination of two-level languages and LFPL is not satisfactory, we are able to
show that recently proposed techniques for type-safe, reflective, and imperative
multi-stage programming can be used to overcome these problems.

Future work will focus on studying the applicability of two-level languages for
other kinds of resource bounds. For example, languages such as RT-FRP [28]
and E-FRP [29] have complete bounds on all runtime space allocation. This is
achieved by interpreting recursive definitions as difference equations indexed by
the sequence of events or stimuli that drive the system. An important direction
for future work is to define a useful class of terminating recursive definitions with
a standard interpretation. Three interesting approaches appear in the literature,
which we plan to investigate in future work: The use of a type system that
explicitly encodes an induction principle, which allows the programmer to use
recursion, as long as the type system can check that it is well-founded [12, 11],
the use of special iterators that are always guaranteed to terminate [5], enriching
all types with information about space needed to store values of the respective
types, and the use of the principle of non-size-increasing parameters [16, 15].

Acknowledgements: Eric Allen and Jonathan Bannet read and commented on
early drafts. We would also like to thank Paul Hudak and Valery Trifonov for
discussions when these ideas were in their formative stages.

References

1. Barendregt, H. P. Lambda calculi with types. In Handbook of Logic in Com-
puter Science, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds. Oxford
University Press, Oxford, 1991.

2. Benaissa, Z. E.-A., Moggi, E., Taha, W., and Sheard, T. Logical modalities
and multi-stage programming. In Federated Logic Conference (FLoC) Satellite
Workshop on Intuitionistic Modal Logics and Applications (IMLA) (1999).

3. Benton, N., and Wadler, P. Linear logic, monads and the lambda calculus. In
the Symposium on Logic in Computer Science (LICS ’96) (New Brunswick, 1996),
IEEE Computer Society Press.

4. Calcagno, C., Moggi, E., and Taha, W. Closed types as a simple approach
to safe imperative multi-stage programming. In the International Colloquium on
Automata, Languages, and Programming (ICALP ’00) (Geneva, 2000), vol. 1853
of Lecture Notes in Computer Science, Springer-Verlag, pp. 25–36.

5. Crary, K., and Weirich, S. Resource bound certification. In the Symposium
on Principles of Programming Languages (POPL ’00) (N.Y., Jan. 19–21 2000),
ACM Press, pp. 184–198.

6. Czarnecki, K., Bednasch, T., Unger, P., and Eisenecker, U. Generative
programming for embedded software: An industrial experience report. In Gen-
erative Programming and Component Engineer SIGPLAN/SIGSOFT Conference,
GPCE 2002 (Oct. 2002), D. Batory, C. Consel, and W. Taha, Eds., vol. 2487 of
Lecture Notes in Computer Science, ACM, Springer, pp. 156–172.

7. Davies, R., and Pfenning, F. A modal analysis of staged computation. Journal
of the ACM 48, 3 (2001), 555–604.

8. Hofmann, M. Linear types and non-size-increasing polynomial time computation.
In the Symposium on Logic in Computer Science (LICS ’99) (July 1999), IEEE,
pp. 464–473.

9. Hofmann, M. A type system for bounded space and functional in-place update.
Nordic Journal of Computing 7, 4 (Winter 2000).

10. Hofmann, M. A type system for bounded space and functional in-place update. In
European Symposium on Programming (ESOP) (2000), Lecture Notes in Computer
Science, Springer-Verlag.

11. Hughes, R., and Pareto, L. Recursion and dynamic data-structures in bounded
space: Towards embedded ML programming. In Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP-99) (N.Y.,
Sept. 27–29 1999), vol. 34.9 of ACM Sigplan Notices, ACM Press, pp. 70–81.

12. Hughes, R., Pareto, L., and Sabry, A. Proving the correctness of reactive
systems using sized types. In In proceedings of the ACM Symposium on Principles
of Programming Languages (POPL) (St Petersburg, Florida, 1996), G. L. S. Jr,
Ed., vol. 23, ACM Press.

13. Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall, 1993.

14. Kamin, S., Callahan, M., and Clausen, L. Lightweight and generative com-
ponents II: Binary-level components. In [25] (2000), pp. 28–50.

15. Lee, C. S. Program termination analysis in polynomial time. In Generative Pro-
gramming and Component Engineering: ACM SIGPLAN/SIGSOFT Conference,
GPCE 2002 (Oct. 2002), D. Batory, C. Consel, and W. Taha, Eds., vol. 2487 of
Lecture Notes in Computer Science, ACM, Springer, pp. 218–235.

16. Lee, C. S., Jones, N. D., and Ben-Amram, A. M. The size-change princi-
ple for program termination. In ACM Symposium on Principles of Programming
Languages (january 2001), vol. 28, ACM press, pp. 81–92.

17. MetaOCaml: A compiled, type-safe multi-stage programming language. Available
online from http://www.cs.rice.edu/ taha/MetaOCaml/, 2001.

18. Moggi, E., Taha, W., Benaissa, Z. E.-A., and Sheard, T. An idealized
MetaML: Simpler, and more expressive. In European Symposium on Programming
(ESOP) (1999), vol. 1576 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 193–207.

19. Mycroft, A., and Sharp, R. A statically allocated parallel functional language.
In Automata, Languages and Programming (2000), pp. 37–48.

20. National Instruments. Introduction to LabVIEW Real-Time. Available on-
line from http://volt.ni.com/niwc/labviewrt/lvrt intro.jsp?node=2381&node=2381,
2003.

21. National Instruments. LabVIEW FPGA Module. Available online from
http://sine.ni.com/apps/we/nioc.vp?cid=11784&lang=US, 2003.

22. Nielson, F., and Nielson, H. R. Two-Level Functional Languages. No. 34 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, 1992.

23. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland,
OR 97291-1000,USA. Available online from ftp://cse.ogi.edu/pub/tech-
reports/README.html.

24. Taha, W. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999. Available from [23].

25. Taha, W., Ed. Semantics, Applications, and Implementation of Program Gener-
ation (Montréal, 2000), vol. 1924 of Lecture Notes in Computer Science, Springer-
Verlag.

26. Taha, W. A sound reduction semantics for untyped CBN multi-stage computation.
Or, the theory of MetaML is non-trivial. In Proceedings of the Workshop on Partial
Evaluation and Semantics-Based Program Maniplation (PEPM) (Boston, 2000),
ACM Press.

27. Taha, W., Hudak, P., and Wan, Z. Directions in functional programming for
real(-time) applications. In the International Workshop on Embedded Software
(EMSOFT ’01) (Lake Tahoe, 2001), vol. 221 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 185–203.

28. Wan, Z., Taha, W., and Hudak, P. Real-time FRP. In the International Con-
ference on Functional Programming (ICFP ’01) (Florence, Italy, September 2001),
ACM.

29. Wan, Z., Taha, W., and Hudak, P. Event-driven FRP. In Proceedings of
Fourth International Symposium on Practical Aspects of Declarative Languages
(Jan 2002), ACM.

