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Abstract

An operational semantics of a significant subset of the
\erilog Hardware Description Language (HDL) is pre-
sented. The semantics is encoded using the logic program-
ming language Prolog in a literate programming style. This
allows the associated documentation to be maintained in
step with the semantics, and the printed version to be pre-
sented in a standard mathematical operational semantics
style. It also enables the semantics to be directly animated
using a Prolog interpreter. Using this approach allows the
exploration of sometimes subtle behaviours of parallel pro-
grams and the possibility of rapid changes or additions to
the semantics of the language covered that could be missed
otherwise. In addition, it provides an extra check on the
validity of the operational semantics.

1. Introduction

The use of formal methods is as successful, if not more
successful, in the realm of hardware design as it is in soft-
ware [20, 21]. This paper investigates the formalization of a
widely used Hardware Description Language (HDL), Ver-
ilog [11]. The use of the Prolog logic programming lan-
guage [8] to encode this as an operational semantics [30, 33]
allows the possibility of direct execution of this formal de-
scription.

An important feature of a specification is that it is not
necessarily executable [4, 14] although some contend that
it is helpful if it is [2, 10]. An animation of a specifica-
tion can help in the understanding of it, just as formal rea-
soning can too, and in a complementary manner. Here we
accept that a specification of a semantics is not normally
directly executable, especially if it is desirable to include
non-deterministic aspects in the description. However, if
the non-determinism can be limited finitely, we may be able
to model it successfully in a usefully executable way.
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Non-determinism is particularly helpful in the formula-
tion of the meaning of parallel programs since the exact
ordering of interleaving of parallel execution of processes
may not be known. In the simulation of hardware, this is
very important since hardware systems are naturally paral-
lel, consisting of a large number of components, all con-
stantly “executing” concurrently.

Section 1.1 introduces two widely used HDLs, VHDL
and Verilog, including formalization of these HDLs and
section 1.2 covers the use of logic programming (specifi-
cally Prolog) for rapid-prototyping specifications with min-
imal development, especially when the specification in-
cludes non-deterministic aspects. Section 1.3 briefly intro-
duces the literate programming style used in the formulation
of the semantics presented in the rest of this paper. Sec-
tion 2, the main part of the paper, presents a Verilog oper-
ational semantics originally encoded using Prolog and Sec-
tion 3 gives some example animations using this semantic
description.

1.1. Hardware Description L anguages

Hardware Description Languages (HDLs) are an increas-
ingly popular way to develop hardware in industry as tool
support improves and standards become established. Two
of the major HDLs in use are VHDL (Very High Speed In-
tegrated Circuit (VHSIC) Hardware Description Language)
[38] and Verilog [11]. Both VHDL and Verilog have IEEE
standards associated with them [23, 24]. For extensive on-
line information relating to Verilog, see [1].

The formal semantics of VHDL has been studied quite
extensively [9], but that of Verilog less so, even though
VHDL is probably a more complex language than Ver-
ilog. A start to providing a formal semantics for Verilog
has been made by Gordon [12, 13], but this covers a rela-
tively small subset of the language. An Open Verilog Inter-
national (OVI) [31] Formal Verification Sandards Working
Group has been established with an aim to ensure interoper-
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ability among formal verification and other tools [35]. This
is concentrating its effort on a synthesizable Verilog subset.

Combinational Verilog programs have been explored for-
mally [37]. In addition, an operational semantics [30, 33]
for a reasonably substantial subset of the language has been
formulated [36]. Subsequently this semantics has been re-
fined in a working paper [18]. An advantage of the avail-
ability of an operational semantics for a language is the in-
creased understanding and the possibility of formal reason-
ing that this brings. A disadvantage is that the semantics
cannot be directly animated. An operation semantics can
allow non-determinism, which is advantageous in a specifi-
cation, but potentially problematic in a simulator where one
execution path must normally be selected.

1.2. Logic Programming

The logic programming language Prolog [8] is an ex-
cellent rapid-prototyping language which can be applied in
many areas, including digital hardware circuits [7]. In par-
ticular, it allows the execution of relations in a possibly non-
deterministic manner, which can be especially useful in the
modelling of parallel systems. Once the relations given in a
specification are encoded in Prolog, the execution proceeds
using a simple depth-first left to right search, depending on
the order of the clauses used for the encoding. It is im-
portant to constrain any non-determinism in a finite way if
termination is to be ensured.

Prolog includes a pseudo-clause called op(...) that al-
lows the definition of infix, prefix and postfix operators with
a specified precedence and also left or right associativity
if required. This facility, although not extensively used by
many Prolog programmers, allows a Prolog program to fol-
low the form of a mathematical definition consisting of a
set of relations fairly directly. The encoding of the rela-
tions themselves is typically of the same order of size as the
original relations. Inevitably, most mathematical relations
include constraints on numbers, sets, etc. Prolog provides
simple integer arithmetic and support for lists that can be
used to encode sets in a simple manner. Normally some
extra clauses are required for encoding the constraints, but
typically these can be of the same order of magnitude in size
as the original relations themselves.

1.3. Literate Programming

In developing the Prolog source program for the opera-
tional semantics presented in this paper, the “literate pro-
gramming” style of Knuth [26, 27] was adopted. Most
programming languages expect input to be in the form of
source program except where portions of the input file are
explicitly marked as comments in some way. In the literate
programming style, the source file is considered as a docu-
ment in its own right, containing portions of program only
in explicitly marked sections. This allows documentation

to be maintained in the same location (file) as the program
itself, aiding the goal of consistency between them during
program development.

Normally text between /*...*/ is considered to be a
comment by most Prolog systems. Instead we view text be-
tween * /... /* as sections of Prolog program. The rest is
the associated documentation in the IZIEX document prepa-
ration system [28] source (ASCII) format used to generate
the report on which this paper is based [3].

The entire contents of Sections 2 and 3 have been pro-
cessed from the original Prolog source program and out-
put generated by the Prolog simulator (which can be treated
in a similar manner to Prolog code) with associated I£TEX
format documentation in this manner and then included di-
rectly. The processing to do this has been fully automated.
As the program was updated during development, so was
the original documentation [3].

2. Verilog Simulator Semantics

In this section, the main part of this paper, we present an
an operational semantics for a significant subset of Verilog
encoded using the logic programming language Prolog.

2.1. Sequential features

For the standard sequential features of the language, only
the program and state variable components are required in
the specification of transition rules. Procedural assignment
overrides the state value associated with a variable V (e.g., a
wire or wires in a circuit) with the new value established by
the expression E. The program is then terminated (indicated

by e).
Y=Ya& (V=E)
(V=EZX) = (¢, %').

The “@” overriding operation above replaces a variable
value with a new expression in the state X to establish a new
state (X' above) with the values of the rest of the variables
unchanged. The formal encoding for “4” may be found
in [3]. The transition relation _ — _ relates a sequential
program and its associated state before the transition to a
new sequential program and possibly updated state after the
transition. The transition is assumed to be instantaneous.

The delay operator # allows a delay of N time units (typ-
ically clock cycles in hardware). There are two possibilities.
Firstly the delay may terminate successfully and uncondi-
tionally:

true
#N «(N)— e.

The transition relation —~N)—_ relates a sequential pro-
gram before the transition to a new sequential program after
the transition, where the transition takes N time units.
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Secondly (and non-deterministically), the program may
execute for some number of delay units less than the maxi-
mum specified:

O<N <NAT=N-N
#N (T)— #N'.

Note that Prolog cannot resolve arithmetic expressions to
their values in parameters, unlike most other programming
languages; hence the use of T above to hold the value of
N — N'. We also explicitly constrain the delay to be greater
than zero to ensure that progress is made. Otherwise time
may “stand still” in the simulation and the program may
never terminate as a result. If this is not an issue, we could
relax this constraint and allow zero delays if required. The
calculation of N’ is encoded in [3] to return smaller values
first so that maximal time progress is made if possible.

Events are another non-deterministic aspect of Verilog.
There are three possibilities. Firstly the event may occur.
This is determined from a change of state from X; to ¥,
which must be provided to this clause:

<21722> |: Event
@Event-S—<21,22)—> S

In the Verilog program @Event-S the sub-program S is
only executed after Event has occurred. The transition rela-
tion _ X, ¥o}—>_ relates a sequential program before the
transition to a new sequential program after the transition,
where the states > and Y» are used to determine if an event
has occurred. (¥;,%2) = Event means that the event
Event (for example, the change of the value of one or more
wires in a circuit) can be proved to have occurred from the
change in state between X; and ¥5. A formal definition can
be found in [3].

Note that at the time of invocation of the above clause
(transition rule) when run as a Prolog program, both ¥; and
Yo will be instantiated because of the way the clause is used
by the rules for parallel composition later. This subtlety
is not immediately obvious from the operational semantics,
but in practice helps considerably with the implementation.

Of course, it is possible that the event does not occur, in
which case there is no change of program state:

<21722> |/J: Event
@Event-S{X,, 5, @Event-S

Alternatively, time may advance, with no change in the pro-
gram state:

true
@Event-S—{_T)— @Event-S.

T2

Note the prefix “_” used in the _T time Prolog variable (not
to be confused with a Verilog variable) above. At this level

we do not know (or even care) how many time units the
program will advance. Thus _T could take on any value and
is the only occurrence of this Prolog variable in the clause.
The prefix “_” indicates to the Prolog system that we know
this fact. Otherwise a warning message is issued by most
Prolog systems when the program is loaded.

Verilog includes a fairly standard conditional “1 £ state-
ment. If the Boolean condition is true, the first sub-program
S, is executed. We do not care about the contents of the sec-
ond sub-program _S; in this case:

EB-(X)
(1f (EB)-S  else_$, %) — (S, X).

EB-(X) is true if the Boolean expression (condition) EB
evaluates to true in the environment of the state 3, holding
the values of all the variables.

Alternatively the condition is false, in which case S; is
executed instead:

- EB-(X)
(if (EB)-_S else $, %) — (S, X).

Note that the conditional construct does not introduce non-
determinism since, although it is defined using two rules,
the conditions under which the rules may be applied are
disjoint. Thus only one of the rules is applicable at any
particular time for a specific “if” statement. In addition,
one of the rules must be applicable, so the condition on the
two rules together is simply true.

Similarly, the iterative “while” loop has two cases to
be considered. When the condition is true, the program
within loop is executed once before the condition is consid-
ered again:

EB- (%)
(while (EB)-S %) — (S; while (EB)-S ).

When the condition is false, the program terminates imme-
diately:

- EB- (%)
(while (EB)-_S, %) — (e, X).

As with the if construct, one or other of these rules is al-
ways applicable, but never both together.

For sequential composition of two programs, if the first
program terminates successfully, we can proceed to the sec-
ond one immediately. The transition may allow time to pass
or may involve events:
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(S,%) = (6,X)
<Sl ) Sz,E> e (Sz,E’).

S#e NS AT)y>e
S5 S AT S

Sl _<Ela22>_> €
S; S ‘(El,EzH S.

We place the clauses above first in the list of Prolog clauses
associated with sequential composition so that execution of
the first sub-program S to completion is considered first by
the Prolog system if this is possible. Notice the check for S;
not being € when time advances. This is a subtle difference
between € and skip found in some other programming lan-
guages such as Occam [34]. An example will be shown later
in Section 3.
Alternatively, S| may only partially progress:

(S, %) > (S,¥) A S #e
(S5 9,8 = (S5 S,Y).

S AT~ S A S #¢
S;SAT—S; S.

S A1, 82> § A S #e
S; S A%, S ;S

Note that the original operational semantics [18] and the
syntax of Verilog itself both use the enclosing keywords
begin...end for sequential composition blocks. This
syntactic sugar adds unnecessary complication to the sim-
ulator. The Prolog parser will accept standard round brack-
ets to disambiguate parsing of operators if required. The
begin...end construct and other derived constructs are
included separately as a macro definitions in the Prolog-
based operational semantics for completeness [3].

This completes the presentation of the basic sequential
features included in this semantics. The clauses above are
very close to the original operational semantics on which
this simulator is based [18].

2.2. Parallel composition

Next we consider parallel composition of sequential pro-
gram components. We consider five cases, each including a
base case and one or more inductive cases.

The first three sets of clauses deal respectively with en-
tering, remaining in, and exiting sequential program execu-
tions not involving time delays or events. These are referred
to as “instantaneous sections” in the rest of this paper.

To enter an instantaneous section, (at least) one of the
parallel sequential programs must of capable of executing:

(S¥) —(S,%)
(SE,(),0) — (S,¥,5,1).

<Slaza<>70> ——)SI,E’,EJ) AN1T>0
<Sl || 827E><>70> _%% || SZ7EI>E7I)'

Sl || SZa27<>a0> - 61 || 512,2172,\”‘

The label in the state (I and J above) is used as a numer-
ical index to indicate which of the parallel sequential pro-
grams is currently executing, if any. The programs are sim-
ply numbered from left to right, from 1 upwards. A value
of zero indicates that none of the parallel sequential pro-
grams are executing an instantaneous section. Of course,
more than one of the sub-programs may be willing to en-
ter an instantaneous section. The Prolog simulator searches
all the possibilities in the order given in the overall Verilog
program.

Once inside an instantaneous section, the Verilog pro-
gram will continue to execute in a sequential manner if pos-
sible:

(S¥) —(S,%)
(SX,%,1) — = §, %, 5, 1).

>0 A (S,3,50,1) — = &, 5, 5,1)
<Sl || &7272070 — (gl || &7EI7207|)'

I=J-1A1>0A
<5272a207|> — <S,272,a20a|>

<Sl || SZ,E;EO,J> — <Sl || SIZaxlaz:O:J)'

Otherwise the program will exit an instantaneous sec-
tion that is currently being executed if it is impossible to
progress any further:

(SX) +
<S7 E72107 1> - 57 E721070>'

| >0 A (Sl,E,EO,D __)S17272070>
<Sl || &7272070 — (Sl || &727207(»'

I=J-1A1>0A
<&7E7207|> — <%7E72070>
(

S || &727207‘” — <Sl || %,E,E0,0>.

If no sequential program is engaged in an instantaneous sec-
tion and all the parallel sequential programs are willing to
engage in an event transition, this may occur:
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S{%,5)s S
<57272070> — <S’72a <>70>

<Sla272070> - ﬂ,E,(),O) A
<&7E;EO>O> - %727 <>>0>

<Sl || &727207(» - Sl || %727070)'

Alternatively, if no sequential program is engaged in an in-
stantaneous section and all the parallel sequential programs
are willing to engage in allowing time to progress by T time
units, then a timed transition can occur:

S{T» S

(SX,0,0) {Tr— (S, %,(),0).
(S1,%,(),0) {T)r— (S, %, (), 0) A
(S,%,(),0) {T)— (S, %,(), 0)

(S 1$,5,0,00 (Tr— (S 1] 8, %, (), 0).

The above clauses cover the parallel transitions given in the
original operational semantics [18].

2.3. Additional transition rules

Some aspects in the original semantics [18] have been
left informal, which is fine in mathematics, but not possible
if the semantics is to be implemented as a simulator. For
instance, once a program has executed to termination (e), it
can be eliminated as a parallel sequential program if it is the
last one in the list. Earlier sub-programs should not be elim-
inated since this would affect the indexing of instantaneous
sections. We could add such a rule as follows:

<&7E><>70> _%6727070)
<Sl || 5272v<>70> - 61725070)

With this rule, a set of parallel sub-programs will reduce to e
if it the overall parallel program terminates completely (i.e.,
all the component sequential programs terminate). How-
ever, such a rule can add considerably to the number of pos-
sible non-deterministic execution paths, so we omit it in the
animations shown in Section 3. If required, we could ensure
this rule is only used when no others are applicable (e.g., at
the end of execution traces).

We must allow time to progress when sub-programs have
finished:

true
€Ty e

For parallel triggering of guards, we must allow events
to trigger if sequential sub-programs have terminated, are
ready to perform a delay or to execute a sequential con-
struct. For example:

true
€Ly, Yoy e
Some rules are helpful in achieving notational simplicity:
S{T)—» S
(SE) T (S, %).
SH{¥,%)—~ S
(SX) «¥1, X (S, X).

2.4. Conditional transitions

So far, we have defined rules for various forms of tran-
sition rule, including conditions when those rules may be
applied above the horizontal bar. The condition may simply
be true in which case the rule may be applied uncondition-
ally. It may be another rule, in which case, that rule must be
checked. It may be some constraint; or it may be a combi-
nation of these conjoined together.

We can encode the various transition rules in the follow-
ing form:

S—»S «
Cond

S— S,
{Cond}.

Here we use the standard Constraint Logic Programming
(CLP) convention of enclosing constraint conditions within
curly brackets “{...}” [29]. Now we must encode all the
conditions we need for this particular set of rules using fur-
ther Prolog clauses. Fortunately this proves to be relatively
simple. The clauses needed are in fact no larger than the
original rules encoded above, and can be found in full else-
where [3].

At the top level, transitions can be timed or untimed. We
add the additional conditions that time advances or the pro-
gram state changes to ensure progress:

ST S <«
Cond
SHT)y =S,
{Cond A T > 0}.
S—H0—~>S <«
Cond
S— =S,

{Cond A S #S}.

Now we can monitor traces of the parallel system state for
terminating programs:

trace(Sys, Sys—(T)— Trace) <«
Sys—T)y» Sy, trace(Sys, Trace).
trace(Sys,Sys) < - (Sys—_T)» _9s').
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Checking for termination is done using Prolog’s negation
asfailure[6], normally indicated using the “\ +” operator in
standard Prolog, but here indicated using the more logical
“=” operator. Prolog’s negation as failure must be used with
care. Essentially, if the (Prolog) variables are instantiated
suitably at the time of invocation, such that the clause fails
in a finite manner, this form of negation can be used safely.

It is convenient to execute a program with the variable
and event states initialized to empty and with no individual
parallel threads in an instantaneous section:

run(P, Trace) <« trace((P, (), (),0), Trace).

This can be used to return successive possible finite execu-
tion traces to the user, for a particular instantiated program
P.

3. Verilog Example Animations

In this section we now present a selection of example
simulation runs of some simple Verilog programs using the
simulator presented in the last section. In normal operation,
Prolog will return possible answers to queries, in the order
that they are found using its depth-first left to right search of
the clauses. If an answer is found, the user has the option to
request another answer or abort the search. If no answer can
be found, the Prolog system simply responds with “No” and
expects a fresh query from the user in response to its “?—"
prompt.

The simulation includes additional support clauses to
aid in the running of Verilog programs. Rather than con-
tinuously prompting the user, possible transitions are sim-
ply output to the display, using Prolog’s built-in write(. . .)
pseudo-clause. The simulator continues until all the possi-
bilities are exhausted or a set number of time steps or tran-
sitions has been reached, in order to allow non-terminating
programs to be aborted conveniently (using Prolog’s built-
in abort clause).

First, consider a single sequential program, consisting of
the sequential composition of three assignments:

?7- runa=1;b=2;c=3.

0 (a=1;b=2;c=3,),(),0)
1__><b_250237<a:1>7<>=1>
2__><C:3a<a:17b:2>7<>=1>

3——><6,<a:1,b:2,C:3>,<>,1>
4——><E,<a:1,b:2,C:3>,<>,0>
No

Here the overall “parallel” program (consisting of only a
single sequential sub-program) must first enter the only in-
stantaneous section available (thread 1). Then each assign-
ment is executed, updating the variable state appropriately.
Finally the program exits the instantaneous section when €
is reached. Once out of the instantaneous section there are
no other possibilities; the parallel program has reached e

and thus the Prolog simulator returns “N0” and expects an-
other query from the user. No non-determinism is involved
in this simple example.

Now consider a delay statement, allowing a delay of 3
time units:

?7— run #3.

0 (#3,0,0,0)
1«3 (&), (),0)
1«2}~ (#1,(),(),0)
2 {1 (&,(),(),0)
L A1) (#2,(),(),0)
2 2> (e,(),(),0)
2 (1)~ (#1,0,(),0)
ij%lb (6,0, (),0)

o

The most “preferable” execution is simply to allow time to
progress by 3 time units and then finish executing the pro-
gram. However there are three other possibilities. Either
time could progress by 2 units followed by 1 unit, or it could
progress by 1 unit followed by 2 units, or it could progress
by 1 unit in three steps. Of course this non-determinism is
not very interesting in the case of a single sequential pro-
gram, but consider three parallel assignments, each delayed
by a different amount:

?— run #3;a:1||#1 b=2|#2;c=3.

0 (#3 a=1|#1;b=2]#2; c=3,),(),0)
1 1) (#2 al:1|||0—2||#1 c=3,(),(0,0)

2 ——>(#2,a:1||e||#1 c=3,(b=2),(),2)

3 == (#2;a=1]|€e||#1; c=3,(b=2),(),0)

4 {1y (#l;a=1]e||c=3,(b=2),(),0)

5 ——>(#1;a:1||6||67<b:2,C:3),<b:273)
6 ——>(#1;a:1||6||67<b:2,C:3>,<b: )70>
7 _%(#15a:1||6||67(b:2ac: )7():0)

8 {1)y»(a=1[elle(b=2,c=3) (),0)

9 ——= (e]lelle,(b=2,c=3,a=1),{b=2,c=3),1)
10 —— (e el e, {(b=2,c=3,a=1),{b=2,c=3),0)
11 — = (el elle,{(b=2,c=3,a=1),(),0)

No

The simulator attempts to progress time by the maximal
possible amount and executes the assignments after the re-
quired delays. The non-determinism in the delay construct
rule allows this to be done in a natural way, letting the Pro-
log system explore the possible paths for us, and resolving
the non-determinism in the process. In this particular case
there is only one possible execution path since the differ-
ence between the delays is only 1 time unit, the minimum
allowable time delay.

Of course, parallelism may introduce non-determinism.
If two (or more) processes are willing to engage in an in-
stantaneous section, then they may be executed in any or-
der:
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?7— runa=1||b=2.

0 (a=1]b=2,0,0)

1S (clb=2,(a=1),0,1)
2__><6 |b:27<a:1>7<>a0>
3——=(elle,(a=1,b=2),(a=1),2)
4—le|lela=1.b=2) (a=1).0)
5——(elle,(a=1,b=2),(),0)
L——=(@=1]e(b=2),(),2)

2~ —(a=1]] e {b=2).(,0)
3——=(elle,(b=2,a=1),(b=2),1)
4—le|lelb=2.a=1) (b=2).0)
l5\1——>(e||e,(b:2,a:1>,(),0>

(0]

With two parallel instantaneous sections, there are two pos-
sibilities; either the first section is executed completely fol-
lowed by the second section, or vice versa. Thus if the same
variable is assigned different values in different parallel in-
stantaneous sections, it is non-deterministic which value it
will hold after the sections have been executed:

?— runv=1|lv=2.

0 (v=1]|lv=2,(),0,0)
1__><6||V:25<V:1>5<>71>
2__><6||V:2=<V:1>=()70>
3__><6||€7<V:2)7<V:1>=2)
4__><6||€7<V:2)7<V:1>10)
5__><6 |67<V:2>7<>5 )
1__><V:1||65<V:2>5<>72>
2__><V:1||65<V:2>5<>70>
3__><6||€7<V:1)7<V:2>=1)
4__><6||€7<V:1)7<V:2>10)
5__><6||67<V:1>7<>50>

No

Now consider an event guard in parallel with a delayed as-
signment than triggers that event:

?7— run @v-w=1|v=0; #1;v=1

0 (@vw=1|v=0; #1;v=1),(),0)
I —= (@vw=1[[#1;v=1,(v=0),(),2)
2 ——= (@vw=1||#1;v=1,(v=0),(),0)
3 {1} (@v-w=1]|v=1(v=0),(),0)

4 ——= (@vw=1]||¢ (v=1),{v=0),2)

5 —— (@v-w=1]||¢ (v=1),(v=0),0)

6 —— ( :1||€7<V:1>7<)70>

7T —— <6||6,<V—]—7WZ1>7<V: >’1>

8§ —— <6||6,<V—]—7WZ1>7<V: >’0>

9 —— <6||6,<V—]—7WZ1>7<>70>

No

The delay must occur first since the event cannot occur until
after the delay. The assignment v = 1 changes the value of
the variable v from 0 to 1, thus causing the event @V to
occur. This allows the guarded assignment W = 1 to be
executed and the program to terminate.

A rather more subtle case can occur with the occurrence
of € at the start of a sequential composition. Consider the

case with an event guard. In the following example, a trace
where Vis initially known to be 0, there are two possibilities
that can occur non-deterministically:

?— trace (e; @v-w=1]||v=1{v=0),(),0).
0 (e; @v-w=1||v=1,{v=10),(),0)
—=(e; @Qu-w=1]le(v=1),(v=0),2)
— = (e; @u-w=1]¢e(v=1),(v=10),0)
3 — @vw_1||e,(v_1> (),0)
- — @VW—].HV—]- <V_0>7<>70>
—>@vw_1||e,<v—1>,( =0),2)
=0),0)

No

Note that one execution path blocks expecting an event @v
that can never occur, whereas the other path proceeds to
successful completion. However, without the leading € in
the first thread of the parallel program, only one of these
execution paths is possible:

?— trace (@v-w=1[v=1,(v=0),(),0).

0 (@v-w=1|v=1(v=0),(),0)
1—=(@vw=1]||e (v=1),(v=0),2)
2— = (@v-w=1]|¢(v=1),(v=0),0)
3——ow=1]le(v=1),(,0)
4——=(e]le,(v=1w=1),(v=1),1)
5——=(el|le,(v=1,w=1),(v=1),0)
6__><€||€7<V_1W 1)7<> )

No

Thus € is rather different from skip, as found in Occam for
example [34]. The simulator has proved useful for checking
the semantics in such situations.

The original operational semantics includes an example
trace for a program, hand “executed” by the authors [18].
Figure 1 shows the result of running that program (with the
arbitrary program Sin the original example replaced by #1
so that the program is fully instantiated for the Prolog sim-
ulator). Eventually all the other sub-programs apart from
the while loop terminate, triggering events on the variable
V twice. After executing the delay, the loop then waits for
another event that never occurs. In practice it would sim-
ply wait forever, but the trace here cannot continue and so
terminates. It would be possible to change the simulator to
continuously progress time at this point if this is desired in-
stead. Note that the Prolog simulator can easily allow the
number of time steps (or transition steps) until abortion to
be set to any desired value if required.

The animation of such programs allows the semantics of
Verilog to be explored in a simple manner, with the ex-
tra confidence that machine execution of a program brings
compared to hand execution. Once formulated, it is easy to
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?7— trace (forever @v-(@V-#1) ||Vv=Vv+1;v=v+2| #3; v=v+3,(v=0),(),0).

0 (forever @v-(@Vv-#1) |[v=v+1; v=v+2| #3; v=v+3,{v=20),(),0)

1 —— (whiletrue - (@v-(@v-#1)) || v_v+1 V=V+2||#3; v=v+3,{v=0),(v=0),1)

2 —— (@v-(@v-#1); whiletrue - (@v-(@v- #1)) [[v=v+1;v=v+2||#3; v=v+3,{(v=0),{v=0),1)
3 —— (@v-(@v-#1); whiletrue-(@v-(@v-#1)) ||v=v+1; v=Vv+2]|| #3; v=v+3,{v=20),(v=0),0)
4 —— (@v-(@v-#1); whiletrue-(@v-(@v-#1)) ||[v=Vv+1;Vv=Vv+2| #3; v=Vv+3,(v=20),(),0)

5 —— (@v-(@v-#1); whiletrue-(@v-(@v-#1)) ||[v=V+2 || #3;, v=v+3,(v=1),(v=0),2)
6 —— (@v-(@v-#1); whiletrue-(@v-(@v-#1)) || e]| #3; v=Vv+3,{v=23),(v=0),2)

7 —— (@v-(@v-#1); whiletrue - (@v-(@v-#1)) || el #3; v=v+3,{v=23),(v=0),0)
8 —— (@v-#1; whiletrue-(@v-(@v-#1)) || e]|| #3; v_v+3 (v=3),(),0)
9 (3> (@v-#1; whiletrue-(@v-(@v-#1)) || e]|| Vv 3,(v=3),(),0)

0 — = (@v-#1; whiletrue-(@v-(@v-#1)) || €| ,( ) (v=3),3)

— (@v-#1; whiletrue-(@v-(@v-#1)) || || € ( ), (v=3),0)

12 —— (#1; whiletrue-(@v-(@v-#1)) || e || & (v= 0)

13 (1) (Whlletrue (@v-(@v-#1)) || e || &,(v= 6),(),

14 —— (@v-(@v-#1); whiletrue-(@v- (@v #1)) || € =6),(v==6),1)

15 —— (@v-(@v-#1); whiletrue-(@v-(@v-#1)) || e =6),(v=16),0)

16 —— (@v-(@v-#1); whiletrue-(@v-(@v-#1)) || e v =06),(),0)

Figure 1. Example trace, based on the example in [18].

add and remove rules to and from the Prolog simulator, and
to modify them, to explore the consequences.

Of course, the simulator presented here does not cover
the whole of Verilog. However, if further program con-
structs are considered important, their operational seman-
tics transition rules can be formulated and added to the sim-
ulator relatively easily.

This exercise is considered a success in that a mathemat-
ical operational semantics for a significant subset of Verilog
has been very directly encoded in Prolog in a short period of
time. Of course this rapid-prototype system is only suitable
for very small Verilog programs, but it could be a useful aid
in the understanding of the semantics of Verilog programs
which is otherwise only generally available in large infor-
mal documents such as the IEEE Standard [24] and text-
books [11] or in large software simulators that are necessar-
ily deterministic for efficiency reasons.

The execution time for all the simple examples shown
is essentially instantaneous, so the simulator is very usable
for such didactic examples in practice. Of course the full
search space is potentially exponential in the presence of
non-determinism, so returning all possible execution paths
for larger examples could be unacceptably slow and the
amount of information returned daunting. However, with
careful ordering of the clauses, the more interesting of the
possible execution paths can be returned first. If just a sin-
gle execution path is required, the simulator could be made
acceptably efficient for much larger examples.

4. Conclusion

The Prolog simulator operational semantics for a subset
of the Verilog Hardware Description Language (HDL) pre-
sented in this paper is pleasingly close to the original opera-
tion semantics on which it was based [18]. Much of the de-

velopment time was spent on establishing the correct prece-
dence and associativity of the operators and then ensuring
the ordering of the encoded relations resulted in a preferred
possible execution path being presented to the user first.
An advantage of the logic programming approach, over the
functional programming approach for instance, is that dif-
ferent execution paths can be allowed in a natural and im-
plicit manner. This is especially useful in the execution of
parallel programs (as normally required in the simulation of
physically parallel hardware) since the combinations of po-
tential execution paths can be explored in a convenient way
by the Prolog system, with little or no explicit encoding for
non-deterministic aspects required.

An interesting area for further exploration is the alge-
braic laws associated with Verilog [19]. The parallel aspects
of Verilog mean that some laws associated with traditional
sequential languages only apply in certain circumstances
and additional laws are required for the parallel parts of the
language. Using these laws, a compiler (written in Prolog,
for example) from high-level Verilog programs to low-level
digital hardware circuits could be produced.

Ultimately, formalization of hardware/software co-
design to help achieve a unified framework for computer
system development is a goal worth pursuing [15, 16, 17,
22]. It is possible to use a parallel programming language
such as Occam in a unified manner for this purpose [25].
However, although attractive formally, unfortunately it is
unlikely to be widely used in practice since Occam is not
popular in industry. The choice of language is important,
and a C-like co-design language (such as Handel-C [32])
may prove to be accepted more easily. A combination of
an existing widely used HDL such as Verilog (or a subset
of it) and a more traditional popular programming language
(such as Java, for example) may be appropriate, provided
the formal basis for each can be established and integrated.
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