
Developing Semantics of Verilog HDL in

Formal Compositional Design of Mixed

Hardware / Software Systems

PhD Thesis

Jordan Dimitrov

Software Technology Research Laboratory

De Montfort University

2002

Abstract

The design and analysis of embedded, mixed hardware/software systems, such as PC

cards, application specific hardware, m- and e-commerce devices, mobile telecommuni-

cation infrastructure and associated software drivers, ishard.

An important issue for correct codesign is the search fora highly compositional and

unifying formal approachthat crosses the hardware/software boundaries and enablesus

to keep up with the fast growth in the complexity and variety of electronic devices and

their associated software.

Hardware/software codesign is a relatively new disciplineinterconnecting several

other fields of research such as Electronics Engineering andComputer Science with the

earliest reference to codesign dated back to 1992.

In this thesis, I describe an integrated compositional framework for codesign of mixed

hardware/software systems, together with its underpinning theory of semantics and refine-

ment.

My work integrates formal methods into the design process and the focus of the thesis

i

ABSTRACT ii

is on refinement from a formal specification into a formal hardware part and a formal

software part.

Central to my methodology is that the synthesis and design start with a single high-

level abstract specification which captures the desired behaviour(s) of the system. Deci-

sions are then taken throughcorrectness preservingrefinement steps.

I have given formal semantics to Verilog — a Hardware Description Language (HDL)

conceived in and extensively used by the hardware industry —in bothdenotational(in

specification-oriented style) andoperationalterms and my work on Verilog enables me

to blend existing and commercially available hardware synthesis tools and methodolo-

gies into my formal framework. This has the benefit of linkingsoftware development

with hardware development in an integrated fashion and therefore span the gap between

hardware and software formally.

The equivalence between the two forms of semantics is provenand a set of generic

refinement laws is presented. A detailed case-study of a smart card application of the

Rivest Shamir Adleman (RSA) encryption algorithm is provided to evaluate my approach.

Declaration

The thesis presented here is mine and original. It is submitted for the degree of Doctor

of Philosophy at De Montfort University. The work was undertaken between September

1998 and May 2002.

Leicester, 2002

iii

Contents

Abstract i

Declaration iii

Acknowledgements ix

Publications x

1 Overview 1

1.1 Introduction . 1

1.2 Scope of the Thesis and Related Work 3

1.3 Original Contribution . 5

1.4 Thesis Outline . 8

2 Hardware/Software Codesign: A Review 9

2.1 The Early Approach . 9

2.2 The Faster, the Better . 12

iv

CONTENTS v

2.3 Embedded Systems . 13

2.3.1 Mixed Hardware/Software Components14

2.3.2 Multi-Language and Multi-Model Specifications 17

2.3.3 Architecture . 18

2.4 Design Constraints and Requirements 19

2.5 Modern Trends in Codesign . 20

2.5.1 Temporal and Spatial Partitioning 21

2.5.2 System on Chip . 22

2.6 Summary . 23

3 A Unifying Methodology for Codesign 25

3.1 A Strategy for Codesign . 25

3.2 Underlying Formalisms . 31

3.3 Interval Temporal Logic . 32

3.3.1 Syntax of ITL . 32

3.3.2 Semantics of ITL . 34

3.4 Tempura . 37

3.4.1 Syntax of Tempura . 37

3.4.2 Semantics of Tempura . 40

3.4.3 Tempura with Memory . 41

3.5 Compositional Verification .. 46

CONTENTS vi

3.6 Formal Refinement and Analysis .48

3.6.1 Refinement Calculus . 48

3.6.2 Analysis . 51

3.7 Summary . 53

4 Denotational Semantics for Verilog 54

4.1 Introduction . 54

4.1.1 Verilog Specifics . 55

4.1.2 Semantics Gap within Verilog HDL 56

4.2 Syntax of Verilog . 58

4.3 Mapping Verilog ontoLT + . 61

4.3.1 Preliminaries . 63

4.3.2 StatementSemantics . 64

4.3.3 AtomSemantics . 68

4.3.4 Example . 71

4.4 Summary . 78

5 Operational Semantics for Verilog 79

5.1 Introduction . 79

5.2 My Contribution . 81

5.3 Structural Operational Semantics 82

5.4 Operational Semantics of Verilog 82

CONTENTS vii

5.5 Healthiness Conditions .92

5.6 Example of a Simulation . 99

5.7 Summary . 111

6 Equivalence of Denotational and Operational Semantics 113

6.1 Introduction . 113

6.2 Outline of the Proof . 114

6.3 Detailed Proof . 115

6.3.1 From a configuration to an ITL state 131

6.3.2 Constructing an ITL formula . 132

6.3.3 The final result . 134

6.4 Summary . 135

7 A Case Study — Smart Card Application 136

7.1 Introduction . 136

7.1.1 Electrical Signals Description 137

7.1.2 Operating Procedure for Integrated Circuit(s) Cards. 138

7.2 Requirements for a Reader . 139

7.3 Requirements for a Smart Card .139

7.4 Top Level Specification . 141

7.5 “Smart Card — Reader” Split . 152

7.6 The Refinement into Tempura . 161

CONTENTS viii

7.7 The Refinement into Verilog . 167

7.8 Summary . 172

8 Conclusion 173

8.1 Vision . 173

8.2 Achievement . 176

8.3 Related Work . 180

8.4 Future Work . 183

References 186

Acknowledgements

Many thanks must go to:

• Prof. Hussein Zedan for his inspirational leadership and full support.

• Dr. Antonio Cau for the patience with which he checked and corrected many tech-

nical errors in the text.

• Dr. Ben Moszkowski and Jifeng He for hours of discussions andadvice.

• My wife Maria for the constant belief in the project.

• All our colleagues at the STRL for the valuable discussions during all these years.

To all of you

Thank You!

ix

Publications

During the duration of the project several publications presented my results to the aca-

demic collegium. These are the following:

1. Cau A., Hale R., Dimitrov J., Zedan H., Moszkowski B., Manjunathaiah M., Spivey

M. A Compositional Framework for Hardware/Software Co-Design, in Camposano

R., Wolf W. (eds.)Design Automation for Embedded Systems, Kluwer, 2002.

2. Dimitrov J. Operational Semantics for Verilog, in Proceedings of APSEC 2001,

IEEE, Macau, Dec 2001.

3. Dimitrov J. Interval Temporal Logic (ITL) semantics for Verilog, IEE event on

Hardware-Software Co-Design, IEE, London, 8th December 2000.

4. Dimitrov J.Compositional reasoning about events in Interval TemporalLogic, in

Proceeding of JCIS 2000, 675-678, Association for Intelligent Machinery, Atlantic

City, Feb–Mar 2000.

x

Chapter 1

Overview

1.1 Introduction

The design and analysis of embedded, mixed hardware/software systems, such as PC

cards, application specific hardware, m- and e-commerce devices, mobile telecommuni-

cation infrastructure and associated software drivers, ishard. A major reason for this is

the ever increasing complexity of hardware and software systems coupled with the his-

torical divide between hardware and software design. Thereare many possible reasons

for choosing a mixed hardware/software, also called heterogeneous, implementation of

a system. Very often conflicting goals and trade-offs have tobe considered and the best

compromise between them must be found. Some typical aspectswhich have to be bal-

anced are performance, cost, flexibility, distribution, power consumption, size and fault

tolerance.

1

CHAPTER 1. Overview 2

An important issue for correct codesign is the search fora highly compositional and

unifying formal approach[34] that crosses the hardware/software boundaries and enables

us to keep up with the fast growth in the complexity and variety of electronic devices

and their associated software. An approach iscompositionalif it includes any method by

which

a) properties of a system as a whole can be inferred from properties of its compo-

nents, without additional information about the internal structure of those compo-

nents [19].

b) requirements that a system must meet are transformed intorequirements towards its

components.

Such an approach will allow us to compose complex systems outof simpler and/or already

existing sub-systems, i.e. simplification, re-use, re-engineering and bottom-up design,

and at the same time infer requirements and specifications for sub-systems, i.e. top-down

design.

More often than not embedded systems work in “hostile” environment ascritical sub-

systems. Thus we need to be able to guarantee their correct behaviour formally; hence the

formal underpinning is central. In the software and even in the hardware industry,sim-

ulation has often been considered synonymous withverification. Although many formal

techniques are now beginning to find their rightful place, usually the design process still

consists of obtaining an implementation from an informal specification without the use

CHAPTER 1. Overview 3

of any formal design techniques. Both hardware and softwareare then simulated for a

number of inputs, an approach known asco-simulation[77, 2, 23]. Bugs discovered are

removed and the simulation process is repeated over again.

I am convinced that some degree of rigour must be incorporated in the process de-

scribed above and my work is a step in this direction.

1.2 Scope of the Thesis and Related Work

Hardware/software codesign is a relatively new disciplineinterconnecting several other

fields of research such as electronic engineering and computer science. The earliest refer-

ence to codesign is dated 1992 at the First International Workshop on Hardware/Software

Codesign [95].

In this thesis, I describe an integrated compositional framework for codesign of mixed

hardware/software systems, together with its underpinning theory of semantics and refine-

ment. I advocaterefinementas my prime design method and I build my work on previous

research in refinement of software [88, 13]. Here I focus moreon the formal refinement

and development of hardware. The codesign process as a wholeis soundly based upon

my unifying semantics which crosses the boundaries betweensoftware and hardware in a

seamless way. A unique characteristic of my framework is that it can validate and analyse

system’s behaviours within asinglelogical formalism, namely Interval Temporal Logic

(ITL) [65, 63, 64] and its executable subset, Tempura [64, 93]. Note that the refinement

CHAPTER 1. Overview 4

process is an interactive and thus cannot be fully automated.

My approach is inspired by existing codesign systems, such as SpecC [27], Polis [3]

and the Lyngby Co-Synthesis System (LYCOS) [55]. The traditional design flow is that

a project starts withInformal Specification, also called requirement, which defines the

behaviour and the functionality of the product. Immediately after the specification, a de-

signer should split the application intohardwareand software[26]. According to the

design flow given in [71], designers have to transform theBehavioraldescription into

Register Transfer Layer (RTL)using high level synthesis tools. At every step of the de-

sign process, simulations and tests are performed to check the correctness of the trans-

formations with respect to the requirements. Although these tests can be automated to a

considerable degree, there are many cases when testing onlydoes not provide the nec-

essary level of correctness and trustworthiness. More often than not, crucial test cases

are overlooked which, in the case of a critical system, may result in human lives and/or

money being lost.

My work integrates formal methods into the design process and the focus of the thesis

is on refinement from a formal specification into a formal hardware part and a formal

software part.

Existing codesign systems, such as Polis [3] and LYCOS [55],include some formal

verification capability, which is most often achieved by useof an external tool, such as

a model-checker. The model-checker can only be used when thedesign is already quite

concrete and such an approach cannot maintain the integrityof the whole design. In

CHAPTER 1. Overview 5

contrast, my approach enforces correctness of the design process by working entirely

within a formal system.

There have been successful hardware/software verificationefforts in academia and

more recently in industry. The majority have used model-checking techniques [17, 49,

38], but also for example functional calculi [8, 44] and Abstract State Machines [7], and

recently more powerful tools such as Higher-Order Logic (HOL) [31] have been gaining

ground.

There is an increasing industrial interest in ITL, for example Verisity has adopted

concepts from ITL in theirTemporal elanguage [37]. IBM has introduced a temporal

logic calledSugar [4] containing ITL-like operators which are targeted at making the

logic more usable to design engineers.

1.3 Original Contribution

Central to my methodology is that a synthesis and design start with a single high-level

abstract specification which captures the desired behaviour(s) of the system. Design de-

cisions are then taken throughcorrectness preservingrefinement steps.

I choose ITL as my main behaviour describing formalism. All desired system’s prop-

erties can becompositionallyverified using the ITL’s compositional proof rules inas-

sumption/commitmentstyle (see section 3.2) which make no distinction between software

or hardware. Again using sound refinement, the ITL specification can then be composi-

CHAPTER 1. Overview 6

tionally refined into a set of executable Tempura modules andthen it can be simulated

and analysed within Tempura, i.e. simulation and refinementare tightly integrated in my

approach whereas behavioural patterns that emerge during the simulation can help with

choosing the next refinement step.

Then I can analyse the set of executable Tempura formulas by aset of techniques,

including quantitative and statistical data gathering [66], and based on this, I can select

which Tempura formula (or module) will be implemented in hardware and which in soft-

ware. The result of this phase is a partitioning into two clusters of modules. These will

be considered best implemented in hardware and software, respectively.

The interface(s) between these modules will largely dependon the target architecture

and its underlying application. Fundamental to my approachis the ability to formulate and

compositionally prove aninterface theoremby using the ITL proof rules, even before the

hardware/software partitioning decision has been taken and in contrast to the commonly

used ad-hoc techniques. By adopting a unifying formalism such as ITL I have increased

the confidence level in the partitioning process.

I have given formal semantics to Verilog [30, 71, 80, 29, 1], my Hardware Description

Language (HDL)of choice, in bothdenotational(in the form of specification oriented)

andoperationalterms [21, 22]. These two reflect the duality of the usage of specifica-

tion languages, i.e. I need to both describepropertiesandmachineswhich implement, or

compute, these properties. I have used these semantics for Verilog to formally underpin

the refinement transformation from an abstract ITL/Tempuraspecification into Verilog as

CHAPTER 1. Overview 7

well as the refinement from behavioural to RTL specification within Verilog itself.

My work on Verilog enables me to blend some commercially available hardware syn-

thesis tools and methodologies into my formal framework. This has the benefit of linking

software development with hardware development in an integrated fashion and therefore

span the gap between hardware and software formally.

The unifying semantics for Verilog allows me to break through yet another barrier

— the semantic differences between the Behavioural and the RTL parts of the hardware

development process. I can now formally prove if an RTL specification refines, i.e. im-

plements, its Behavioural specification.

On a purely technical side, I show how I can incorporate memory variables into Tem-

pura, i.e. I conservatively extend the language of Tempura into LT+ 1 and prove some

properties about these memory variables.

My Operational semantics for Verilog, unlike most of the proposed semantics in the

literature, captures both behavioural and RTL constructs and is fully parallel. I prove the

equivalence between the operational and the denotational semantics and this guarantees

the uniformity of my work.

1see section 3.4.3 on page 42

CHAPTER 1. Overview 8

1.4 Thesis Outline

Chapter 2 gives a review of the subject, chapter 3 focuses on my computational model

which serves as an architecture for hardware/software codesign and within it section 3.2

describes my specification language of ITL/Tempura and section 3.6 presents a set of

practical refinement rules. In chapter 4 I develop my denotational semantics for Verilog,

with the operational semantics given in chapter 5 and, crucially, the equivalence between

these two formalisms is presented in chapter 6. Finally a case study of smart card appli-

cation is given in chapter 7.

Chapter 2

Hardware/Software Codesign: A

Review

I give an overview of hardware/software codesign as a discipline. Some

historical remarks put the subject into context and show theprogress

of the development in the field. I give a critique of the early ways of

constructing mixed hardware/software systems and I show how current

projects demand new approaches and pose new challenges. I end with

some cutting-edge techniques.

2.1 The Early Approach

Hardware/software codesign as a term was invented in 1992 atthe First International

Workshop on Hardware/Software Codesign [95]. Figure 2.1 gives a typical design flow

9

CHAPTER 2. Hardware/Software Codesign: A Review 10

widely adopted at that time.

Informal Specification

Software modelHardware model

Schedulling
Software

Generation

Hardware
Synthesis

Hardware
Blocks

Prototyping

Communication Synthesis
and Architecture Integration

Software
Blocks

S
im

ul
at

io
n T

esting

Figure 2.1: Traditional Design Flow in Codesign

According to this traditional design flow, a project starts with an Informal Specifi-

cation, also called requirement, which defines the behaviour and the functionality of the

product. Immediately after the specification, a designer would split the application into

hardware and software which implies that several design decisions must have been taken

at this point. These include:

• the underlying architecture has been fixed;

• the functionality and the behaviour of the whole system havebeen split between the

software and the hardware into different modules;

• the communication protocol between the system modules has been chosen.

CHAPTER 2. Hardware/Software Codesign: A Review 11

Once the functionality of the system has been split between the hardware and the software

parts, the development of these starts. It goes through modelling, hardware synthesis or

software generation, and, as a result of that, hardware/software blocks are obtained.

This is followed by merging system blocks using the architectural and communica-

tional paradigms chosen at the point of modelling and only after that we can build a

working prototype of the system as a whole.

Many problems were encountered while using this design flow.Most of them came

from the very early design decisions taken in accordance to it. As I mentioned above, the

communication between the different system modules and thearchitecture of the whole

product are fixed early in the design process without any validation of their suitability.

The hardware/software split is also decided and engineeredwithout any check. Most of

these crucial choices are underpinned with intuition and best practices rather than rigid

reasoning.

Despite the undergoing testing and simulation during the development of the hardware

and software modules, the first place where the system, as a whole, is assembled and

tested and/or simulated is at the point of the communicationsynthesis and architecture

integration. Only at this moment, very late in the design cycle, one is able to check if

the design decisions taken at the very beginning are correctwith respect to the original

system’s specification which, in the mean time, may have beenchanged.

CHAPTER 2. Hardware/Software Codesign: A Review 12

2.2 The Faster, the Better

Historically, hardware/software codesign was mainly viewed as a methodology for devel-

oping hardware accelerators, say in a Fast Fourier Transformation (FFT) application [9].

The typical architecture of these early days [45] is sketched in Figure 2.2.

micro Processor Memory

Accelerator
Hardware

Figure 2.2: Accelerator Architecture

Here we have a piece of software code that needs to be accelerated. The design pro-

cess consists of finding these parts of the code that are most suitable for acceleration

and placing them into a hardware accelerator. In this setup,the program is very simple,

sequential piece of code, the underlying architecture is a simple bus with co-processor

communication and the hardware/software partitioning isstatic. The challenge here was

to evaluate the best configuration, in terms of speed of execution, between the code on the

micro processor and the hardware co-processor. Viewed thisway, the problem reduces

down to granularity and optimisation and has already been solved by large in previous

research as part of the LYCOS project [47, 48, 55, 96]. LYCOS relies on, what essen-

tially are granules of computation,Basic Scheduling Blocks (BSBs)that may be moved

CHAPTER 2. Hardware/Software Codesign: A Review 13

between hardware and software. Then, the partitioning algorithm PACE is used to obtain

fast functional partitions.

2.3 Embedded Systems

An obvious application of hardware/software codesign is development of embedded, or

even distributed embedded systems [11, 46, 51, 52]. A typical application would in-

volveheterogeneous components, multi-languageandmulti-model specifications, as well

as complex targetarchitectures. Figure 2.3 gives an idea of a typical application involving

such a model.

Gateway

Gateway

RAM

CACHECPU

RAM

CACHECPU

RAM

CACHECPU

RAM

CACHECPU

RAM

CACHECPU

RAM

CACHECPU

RAM

CACHECPU

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Sensors Actuators

Input/Output

Network Interface

FPGA
FLASH

Figure 2.3: Distributed Embedded System

All nodes are interconnected and co-operate in a tandem. Sensors and actuators can

CHAPTER 2. Hardware/Software Codesign: A Review 14

be connected to both digital and analogue input/output sub-systems. The internal compo-

nents of a node communicate via a network, e.g. a bus. Field Programmable Gate Arrays

(FPGAs) are normally reconfigured on the fly, thus making it possible for the system to

adapt to changes in its environment. Network Interface provides connectivity with other

nodes and is a basis for the distributed computational model.

Many applications have very complex architectures. As shown in Figure 2.3, different

tasks can be distributed between many networkedSystems on Chipand often actuators

controlled by one of the nodes depend on information collected by sensors at others.

2.3.1 Mixed Hardware/Software Components

There are many possible reasons for choosing a mixed hardware/software, also called

heterogeneous, implementation of a system [74, 24]. Very often there are conflicting

goals, and trade-offs have to be made to find the best compromise between them. Some

typical aspects which have to be balanced are:

Performance More often than not an embedded system must perform in hard real time.

Depending on the application, there might not be any processors available with

sufficient performance. Then it becomes necessary to designhardware, where the

parallelism can be exploited to gain enough computational power. A typical exam-

ple would be a Joint Photographic Experts Group (JPEG) encoder [12].

Cost Constructing custom built hardware or using high-end microprocessors is usually

CHAPTER 2. Hardware/Software Codesign: A Review 15

quite expensive, and for a system there is no need to perform quicker than the re-

quirements. Implementing parts of a system in software can significantly reduce the

product cost. Using just such an argument many hardware companies introduced

the so called “soft modems”, also known as Host Controlled Modems1, which lack

the crucial Universal Asynchronous Receiver Transmitter (UART) hardware com-

ponent and rely on the host computer to perform the UART functions via specialised

modem drivers.

Flexibility If a part of the behaviour is likely to be modified after the system is in opera-

tion, or if several versions of the same system are planned, it is important to allow

changes to be made as easily as possible. This might be an argument for choosing

to implement the parts which need to be changed in software and/or reconfigurable

FPGAs. Many embedded devices in telecommunication applications use firmware

and they are normally being upgraded regularly.

Distribution In some situations the use of a heterogeneous architecture is dictated by the

environment. For instance, it could be the case that the sensors and actuators of

the system are geographically dispersed, which motivates adistributed architecture

where the computing resources are best placed close to the related parts of the

environment. Automotive applications follow similar distribution.

1Initially, all soft modems supported MS Windows only, hencethe alias WinModems. However, this
trend has now been broken and LinModems for Linux are also known.

CHAPTER 2. Hardware/Software Codesign: A Review 16

Power Consumption Modern microprocessors run at ever-increasing clock frequencies,

and since the frequency is a factor which contributes very much to the power con-

sumption, considerable savings can be made by using an Application Specific In-

tegrated Circuits (ASIC) that runs at a lower clock frequency, but still reaches the

same performance through increased parallelism. Mobile computing has very strict

requirements on the consumption.

Weight and/or Size Many embedded systems are in some sense portable, and then the

weight and/or the size of the product becomes important. This is, for instance, the

case for mobile telephones, but also in aerospace and automotive applications. If

weight is an issue, it can be desirable to integrate as much functionality as possible

into a smaller piece of hardware.

Fault Tolerance Many embedded systems are safety-critical, and they must function, at

least partially, even under severe disturbances. Therefore, it might be necessary to

duplicate functionality, and implement the same part in several different technolo-

gies to reduce the risk of systematic errors which might makeall components of a

certain kind faulty.

The list is by no means complete. Many other parameters couldbe considered for

particular applications which shows the complex characterof the development process

from the very early stages to the very latest.

CHAPTER 2. Hardware/Software Codesign: A Review 17

2.3.2 Multi-Language and Multi-Model Specifications

The choice of the underlying paradigm is a crucial one for many embedded applications.

Nowadays, designers can select from many languages, both for describing hardware and

software, levels of abstraction and communication paradigms [11]. Often, the develop-

ment process involves shifts from one to another. Let us lookbriefly into some typical

examples when a shift in the paradigms is bound to occur during the development of the

system.

• Consider an implementation of a popular network protocol [18]. If the underly-

ing physical transport layer is asynchronous and unreliable and in the same time

the application requires synchronous channel for communication, then the obvious

transition from synchronous to asynchronous communication has to occur at some

stage of the design process.

• Typically, designing a system in Verilog HDL [71, 29] startswith a high levelBe-

haviouraldescription. However, the desired specification is a fairlylow level RTL

design and the final goal is an even lower levelStructuraldesign. The transition be-

tween RTL and Structural, or gate level, has already been automated and poses little

concern. On the other hand, the shift between a Behavioural and RTL specification

is normally underpinned by best practice and intuition.

Obviously, the problems of choosing the correct paradigm and effectively switching

between different levels of abstraction are significant. The success of a project often

CHAPTER 2. Hardware/Software Codesign: A Review 18

depends on thecorrectnessof these transitions.

2.3.3 Architecture

Architecture selection is an important part of the development process and many re-

searchers position it at the moment of system integration [25]. The designer must care-

fully select the following aspects of application’s architecture.

• A set of components, albeit hardware or software, each one ofwhich has its be-

haviour and interface specified in a common formalism.

• An inter-networking media, such as channels, buses, network controllers.

• A well defined protocol by which all components communicate and co-operate.

Each one of these elements is crucial and its selection must be verifiable.

One may view the architecture selection as a mapping processwhich takes the func-

tionality of the system and maps it down to a set of (predefined) components. This nor-

mally is justified by the desired manageability of the mapping process. In other cases,

the architecture may be limited to a library of predefined components due to vendor re-

strictions or interfacing constraints. Memory hierarchy or an I/O subsystem design based

on standard components has been successfully automated using this technique. Differ-

ent approaches work on retargetable compilation [79], or ona very abstract formulation

of partitioning for co-design [42, 43, 69, 81]. The structure of the application specific

hardware components, on the other hand, is generally much less constrained.

CHAPTER 2. Hardware/Software Codesign: A Review 19

I would advocate the idea of stepwise calculative refinementof the system, which in

effect helps me to obtain a provable2 architecture.

2.4 Design Constraints and Requirements

In addition to the aspects of components design given in section 2.3.1, there are some

other design constraints that one should consider when developing and/or maintaining

a mixed hardware/software system. All of these are direct consequences of a composi-

tional approach which should be adopted if one wishes to explore the full benefits of the

codesign.

Legacy SystemsThe benefits of the compositional codesign become highly visible when

it comes to evolving legacy systems [84, 85, 24] and bringingthem up to date with

evolving needs and/or evolving technology. Let us considerthe following example

for illustrative purposes. Suppose we were given some requirements which can

only be met by using ASIC module because the available processors are too slow

and/or too expensive for a software implementation. The system is developed using

compositional codesign and deployed. With time, there are two possible scenarios

which could lead to a need for redesign.

• Relaxed initial timing requirements.

2with respect to a formal requirement

CHAPTER 2. Hardware/Software Codesign: A Review 20

• Improved and/or cheaper Central Processing Unit (CPU) technology.

Any of these could trigger the removal of the customised hardware component and

replacing it with equivalent software package. This inevitably gives a cheaper and

a smaller final product.

Obviously, the need for replacing a software module with a quicker hardware coun-

terpart is also possible.

Time to Market It is commonly accepted that designing with reusable components re-

duces the necessary time to market [72]. In this context, compositional co-design

has a huge role to play since it allows us to easily incorporate components into both

hardware and software contexts.

Of course, the list of the above design requirements could beextended. The variety

and complexity of those and the previously listed in section2.3.1 tell us that the initial

methods used when codesign meant little more than simple hardware accelerator are in-

adequate nowadays.

2.5 Modern Trends in Codesign

The newest trends in the field of hardware/software codesigninclude some of the follow-

ing issues. All of them attempt to tackle the design of embedded systems and improve

on aspects like flexibility and adaptability, or explore newtechnologies for building more

CHAPTER 2. Hardware/Software Codesign: A Review 21

compact systems.

2.5.1 Temporal and Spatial Partitioning

Consider again the simple idea of a hardware accelerator given in section 2.2. Here we

will build on this via a dynamic reconfiguration “on the fly” ofparts of the software code

into an FPGA accelerator. As shown on Figure 2.4, we would like to use the reconfig-

urable FPGA dynamically and build the accelerator for the code when it is needed rather

than at compile time. This idea does not give anything new in terms of a underlying

architecture but does improve on flexibility. Obvious benefits are

• improved utilisation of the reconfigurable datapath in the FPGA,

• reduced size of the real hardware and

• lower cost and power consumption as a result of reduced hardware.

Most importantly, this allows the system to adapt to specificenvironments by selecting

parts of the software code to be implemented in hardware during the runtime and hence

improving on response time.

The example in Figure 2.4 gives how parts of a program code arebeing temporally

loaded at different timest0 < t1 < t2 into the FPGA accelerator.

Of course the achieved flexibility does not come for free. Thewhole concept relies

heavily on a scheduler that decides which part of the code to be compiled and loaded

CHAPTER 2. Hardware/Software Codesign: A Review 22

micro Processor

at t0

Memory

Accelerator
FPGA

at t

at t2

1

Figure 2.4: Temporal and Spatial Partitioning

into the FPGA “on the fly”. The particularly interesting areaof research in reconfigurable

processors [52] implements this idea. They are considered attractive due to their ability

to adapt to a particular program and, thus improve its timingproperties. The challenge in

this context is to construct a compiler that utilises this feature in full.

2.5.2 System on Chip

System on chips [29, 82, 24, 39, 83] are in effect complete systems on a single piece of

silicon. The normally separate pieces such as the CPU, memory controller, main memory,

I/O control, and the various buses and interconnects, are placed on a chip. Main benefits

are higher integration, reduced power consumption and size. Because of limited space on

the chip though, the tradeoff of functionality implementedin hardware versus equivalent

software package becomes ever so important. Therefore hardware/software codesign is

the prime methodology for system on chip development.

CHAPTER 2. Hardware/Software Codesign: A Review 23

Interesting aspect of todays system on chip design is that the traditional bus-based

architectures are being replaced by “networks on chip” withassociated protocols and

network controllers.

2.6 Summary

As a roundup of my survey on co-design I can simply say that thedesign methods used in

the early days are no longer applicable. The assumption thata specification is a “simple”

and sequential program is no longer valid. Many applications can be heterogeneous and

very complex.

The main goal of codesign is no longer acceleration only. It can be power consump-

tion, size, available space on the chip, flexibility, adaptability, compositionality and main-

tainability. Architectures are no longer simple and/or bus-based either. They can be very

complex networks and, especially with distributed applications, can have the topology of

the Internet [24].

What is therefore needed is a unifying methodology within which

- the whole system is derived from a single logical representation,

- the system is compositionally refined,

- the gaps between various abstraction levels are bridged and

- simulation and verification are integrated.

CHAPTER 2. Hardware/Software Codesign: A Review 24

In the following chapters I design and evaluate such a methodology.

Chapter 3

A Unifying Methodology for Codesign

My development strategy is presented together with the underlying for-

malisms of ITL and Tempura. Several different development methods

can be derived from the methodology described here. One can mix dif-

ferent language platforms, hardware technologies and existing indus-

trial tools in order to achieve flexibility and adaptability. I also present

some of my fundamental results in incorporating memory variables into

Tempura. The well published system for compositional verification and

refinement is also given for completeness.

3.1 A Strategy for Codesign

The process of modelling a system, albeit sequential or concurrent, timed or untimed,

needs a suitable computational model. I take the view that a computation defines math-

25

CHAPTER 3. A Unifying Methodology for Codesign 26

ematically an abstract architecture upon which applications will execute. Asystemis a

collection ofagents(which is my unit of computation), possibly executing concurrently

and communicating (a)synchronously via communication links. Systems can themselves

be viewed as single agents and composed into larger systems.Systems may have timing

constraints imposed at three levels; system wide communication deadlines, agent dead-

lines and sub-computation deadlines (within the computation of an individual agent).

At any instant in time a system can be thought of as having a uniquestate. The system

state is defined by the state variables of the system and, for concurrent system, by the

values in the communication links.Computationis defined as any process that results in

a change of system state. An agent is described by a computation which may transform a

private data-space and may read and write to communication links during execution. The

computation may have both minimum and maximum execution times imposed.

It is important to note that when I talk aboutsystemI do not make any distinction

between software or hardware. I simply talk of a set ofagentscollaborating to achieve

the desired behaviour. Some of those agents may be realised (or implemented) in software

and some in hardware.

Fundamental to my proposed investigation is that a synthesis and design methodol-

ogy should start with a high-level abstract specification which describes the desired be-

haviour(s) and interface(s) of the system under consideration. The target system is derived

via design decisions made throughcorrectness preservingrefinement steps. My proposed

development methodology is depicted in Figure 3.1 below.

CHAPTER 3. A Unifying Methodology for Codesign 27

(ITL)

Tempura Clusters

Module Analysis and Partitioning

Tempura−H

R
ef

in
em

en
t

Tempura−S

R
ef

in
em

en
t

Behavioural Specification

Verilog/VHDLHandel

H
a

rd
w

a
re

 C
o

m
p

il
a

ti
o

n

C, C++, Java, Ada

R
ef

in
em

en
t

Register Transfer
(Verilog/VHDL−RTL)

Gate/Transistor

Layout

E
x

is
ti

n
g

 T
ec

h
n

o
lo

g
ie

s

Cluster Interface

(MONA/SPIN)

Tempura

AnaTempura

ITL Workbench

ITL−HOL Verification

Validation

Simulation

Analysis

High−Level Specification

Refinement

Step 0

Step 1

Step 2

Step 4

Step 3

Figure 3.1: The Development Methodology

CHAPTER 3. A Unifying Methodology for Codesign 28

The design process begins with a high-level abstract specification written in Interval

Temporal Logic (ITL) depicted in Figure 3.1 as Step 0. Properties of interest can becom-

positionallyverified using the ITL’s compositional proof rules inassumption/commitment

style (see section 3.2). At this level I make no distinction between software or hardware.

Using a sound refinement calculus, the ITL specification can then be refined into a

set of Tempura modules (an executable subset of ITL) and simulated and analysed (using

Tempura, a part of the ITL Workbench). During this process, various design decisions are

made, for example synchronous vs. asynchronous or sequential vs. parallel (Step 1).

This is followed by a ‘module analysis’ phase in which a set ofquantitative and sta-

tistical data may be obtained (in [66] various techniques are given which can be utilised).

The result of this phase is a partitioning into two clusters of modules, namelyTempura-H

for the hardware part andTempura-Sfor the software part. These are best realised in hard-

ware and software implementation, respectively. The interface(s) between these clusters

will depend on the target architecture and in turn can be verified compositionally using

the ITL proof rules (Step 2).

The hardware and software parts are then refined into behavioural specification and

a program in any HDL or programming language respectively asper Step 3. I mention

Handel [41, 76] and Verilog as possible HDLs and C/C++, Java and Ada as software

languages. Based on the particular choice of language and technology, my methodology

can be reduced to a particular design method.

At last, Step 4 of my methodology is dedicated to the compilation phase of the devel-

CHAPTER 3. A Unifying Methodology for Codesign 29

opment. Once the RTL description of the hardware is achieved, I can use commercially

available synthesis tools and produce a netlist which afterthat is being implemented into

real piece of silicon. The corresponding step in the software branch has not been depicted

for simplicity and to emphasise my focus on the hardware development.

The methodology given above can be specialised into severaldifferent design meth-

ods. All of them share the steps from Step 0 to Step 2. At Step 3 Ican choose several pro-

gramming and hardware description languages. Each particular method would specialise

into the preferred design techniques that will depend on underlying hardware technology,

language support and available expertise. For example, thechoice between Handel and

Verilog may depend on available synthesiser tools, while the choice between C and C++

could be based on the need for object oriented support in the design.

As depicted in Figure 3.1, the abstraction gaps existing betweenBehavioural, RTL

andGate levelsmust be bridged using sound refinement/transformation rules. It is fairly

easy to define the refinement relation, and therefore derive practical refinement laws as

per section 3.5, for the transition between ITL and Tempura since they both have common

semantics. For example, ifSpec is a specification in ITL andPT is a Tempura program,

then

Spec v PT , iff PT ⊃ Spec.

Similarly, for the transition between Tempura and Verilog,as well as between the

different abstraction levels within Verilog itself, a unifying semantics based on ITL for the

CHAPTER 3. A Unifying Methodology for Codesign 30

various notations, i.e.Behavioural, RTLandGatenotations, is needed. Such a unifying

semantics is detailed in chapters 4 and 5 for my chosen HDL Verilog.

Several applications arecomputebound as opposed tocontrol bound, i.e. the com-

putational complexity of the algorithms used in these applications grows in orders of

magnitude with respect to the input size. For instance the 2-D Discrete Cosine Transfor-

mation (DCT) algorithm, widely used in many signal and imageprocessing applications,

is of O(N4) complexity for input sizes ofO(N2) (for some size parameterN). Regular-

ity in computation is a characterising feature prevalent in many of these algorithms. A

model of computation that is well suited for efficient implementation of these algorithms

is thesystolicor pipelined-parallelism(see section 7) computational model. The nature

(regular) and type (fine-grain) of parallelism in this modelmakes it particularly suited for

implementing algorithms as hardware components [58]. A transformation algebra exists

for systematically synthesising these components from high level specification [50].

Using sound refinement/transformation rules, the modules in theTempura-Scluster

could be transformed into software components written in popular languages, such as

Java, C or C++. Similarly, modules in theTempura-Hcluster are further refined into a

hardware description language such as Verilog. Alternatively, theTempura-Hcluster may

be refined to Handel modules which subsequently compiled to netlists (through hardware

compilation technology). As depicted in Figure 3.1, refinement calculi may be used to

bridge the gap between the various abstraction levels in these technologies.

CHAPTER 3. A Unifying Methodology for Codesign 31

3.2 Underlying Formalisms

As underlying logic I choose ITL [65, 63, 64]. My choice is based mainly upon the

following reasons; it issimple, flexibleand has anexecutable subsetgiving the basis for

both formal proof of the validity of the system design as wellas simulation, animation and

rapid prototyping in Tempura [64, 93]. Furthermore, ITL hasa complete proof system for

both its finite and infinite parts of the logic [62, 60].

A very major advantage of ITL is the ability to reasoncompositionallyabout spec-

ifications via assumption-commitment pairs [65]. This allows me to specify and prove

compositional properties of the system in a practical way.

My formalism has to be dual in the sense that I do not only need to specify a system

but I also need a framework into which I can reason about behaviours, including unde-

sirable behaviours and avoiding them, as well as a frameworkinto which I can execute,

animate and simulate my specification. Therefore, I will useITL when reasoning about

and proving properties of my design while my main specification executable language

will be Tempura which, being a subset of ITL, has formal semantics and can be both

viewed as a programming language and logic.

However, the differences between ITL and Tempura, inherited by the executability

of the later, command certain excess in our exposé. I will present here the syntax and

the semantics of both despite Tempura’s appurtenance into ITL and I shall justify this

approach by the differences in the basic operators of the twolanguages.

CHAPTER 3. A Unifying Methodology for Codesign 32

3.3 Interval Temporal Logic

As I mentioned earlier, my proposed approach is based on a single logical framework

whose underlying logic is Interval Temporal Logic. In this section I give an introduction

to ITL, its syntax and formal semantics. For further readingand many practical examples

I will refer the interested reader to [65, 63, 64, 93, 62, 60].

Interval Temporal Logic (ITL) is a flexible notation for bothpropositional and first or-

der reasoning about intervals (behaviours) found in descriptions of hardware and software

systems. It can handle both sequential and parallel composition unlike most temporal

logics. It offers powerful and extensible specification andproof techniques for reasoning

about properties involving safety, liveness and timeliness.

3.3.1 Syntax of ITL

The syntax of ITL is defined in table 3.1 whereµ is an integer value,a is a static variable

(does not change within an interval),A is a state variable (can change within an interval),

v a static or state variable,g is a function symbol andp is a predicate symbol.

Expressions e ::= µ | a | A | g(e1, . . . , en)

Formulae f ::= p(e1, . . . , en) | ¬f | f1 ∧ f2 | ∃v r f | skip | f1 ; f2

Table 3.1: Syntax of ITL

With these operators I can define the usual temporal operators 2, 3 and©, and the

Tempura constructsempty, if then else, etc.

CHAPTER 3. A Unifying Methodology for Codesign 33

• the predicates:true =̂ 0 = 0 andfalse=̂ ¬true.

• disjunction, implication and equivalence:f1 ∨ f2 =̂ ¬(¬f1 ∧ ¬f2),

f1 ⊃ f2 =̂ ¬f1 ∨ f2 andf1 ≡ f2 =̂ (f1 ⊃ f2) ∧ (f2 ⊃ f1).

• If-Then-Else:if f0 then f1 else f2 =̂ (f0 ∧ f1) ∨ (¬f0 ∧ f2).

• universal quantification:∀v r f =̂ ¬∃v r ¬f .

• next, more and empty:©f =̂ skip ; f ,

more=̂ ©trueandempty =̂ ¬more.

• chop-star:f ∗ =̂ empty ∨ (f ∧ more) ; f ∗.

• infinite and finite:inf =̂ true ; falseandfinite =̂ ¬inf.

• sometimes and always:3f =̂ finite ; f and2f =̂ ¬3¬f .

• some subinterval, some initial subinterval, all subintervals, mostly and keep:

3a f =̂ 3(f ; true),

3i f =̂ f ; true,

2a f =̂ ¬(3a ¬f),

2m f =̂ 2(more ⊃ f) and

keepf =̂ 2a (skip ⊃ f).

• final state:fin f =̂ 2(empty ⊃ f).

CHAPTER 3. A Unifying Methodology for Codesign 34

For example, in an interval, if the variableI always equals 1 and in the next state the

variableJ equals2 then it follows that the expressionI + J equals3 in the next state:

2(I = 1) ∧ ©(J = 2) ⊃ ©(I + J = 3)

Many more examples can be found in [64] as well as in later chapters were I show how I

use ITL and Tempura to specify and reason about Verilog programs.

Types in ITL

There are two basic inbuilt types in ITL (which can be given pure set-theoretic defini-

tions). These are integersZ (together with standard relations of inequality and equality)

and Boolean (trueandfalse). In addition, the executable subset of ITL (Tempura) has the

basic type vector (see table 3.2).

Further types, including reals and matrixes, can be built from these by means of× and

the power set operator,P similarly to the method adopted in the specification language

Z [40].

3.3.2 Semantics of ITL

Every ITL formula is evaluated over a specific time interval which is simply an (in)finite

sequence of states. Each state represents a mapping betweenthe set of variables and their

values, i.e. the state is a snapshot of the values of the set ofthe variables. So let me assume

CHAPTER 3. A Unifying Methodology for Codesign 35

an intervalσ with consecutive statesσ0, σ1,

Informal Semantics

There are two main categories in ITL, namelyexpressionsandformulas. Each constant

and static variable of any type keeps its value overσ, while state variables of any type

may change.

All formulasare evaluated over the whole interval. For example,f1 ∧ f2 is true over

σ, iff f1 andf2 are true overσ. Similarly∃ represents the existential quantifier.

More interesting areskip, “;” and “∗”. While skip is true over every interval with two

states, there are three cases whenf1 ; f2 could be true overσ.

1. σ is a finite intervalσ0, . . . , σn and it can be split into two subintervalsσ′ =

σ0, . . . , σk andσ′′ = σk, . . . , σn sharing the common stateσk for some0 ≤ k ≤ n

andf1 is true overσ′ andf2 is true overσ′′.

2. σ is an infinite intervalσ0, . . . and it can be split into two subintervalsσ′ = σ0, . . . , σk

andσ′′ = σk, . . . sharing the common stateσk for some0 ≤ k andf1 is true overσ′

andf2 is true overσ′′.

3. σ is an infinite intervalσ0, . . . andf1 is true overσ.

For “∗” I will say that it is the repetitive enclosure of “;” and therefore there are again

three cases for the truth value off ∗ overσ.

CHAPTER 3. A Unifying Methodology for Codesign 36

1. σ is a finite intervalσ0, . . . , σn and it can be split into finite number of subintervals

σ(j) = σkj
, . . . , σkj+1

, where the first indexk0 = 0, the last index isn and0 ≤ kj ≤

kj+1 ≤ n, sharing the common statesσkj
for all kj andf is true over allσ(j).

2. σ is an infinite intervalσ0, . . . and it can be split into infinite number of finite subin-

tervalsσ(j) = σkj
, . . . , σkj+1

and0 = k0 ≤ kj ≤ kj+1 sharing the common states

σkj
for all 0 ≤ kj andf is true over allσ(j).

3. σ is an infinite intervalσ0, . . . and it can be split into two subintervalsσ′ = σ0, . . . , σk

andσ′′ = σk, . . . sharing the common stateσk for some0 ≤ k andf ∗ is true over

σ′ andf is true overσ′′.

Formal Semantics

In the text below, I will assume that tt and ff are the truth andthe false values,̂g is the func-

tion that corresponds to the functional symbolg andp̂ is the predicate that corresponds to

the predicate symbolsp. I also writeσ ∼v σ′ if the intervalsσ andσ′ are identical with

the possible exception of their mappings for the variablev and I denote the length ofσ

with |σ|.

• Mσ[[v]] = σ0(v).

• Mσ[[g(e1, . . . , en)]] = ĝ(Mσ[[e1]], . . . ,Mσ[[en]]).

• Mσ[[p(e1, . . . , en)]] = tt, iff p̂(Mσ[[e1]], . . . ,Mσ[[en]]).

CHAPTER 3. A Unifying Methodology for Codesign 37

• Mσ[[¬f]] = tt iff Mσ[[f]] = ff.

• Mσ[[f1 ∧ f2]] = tt iff Mσ[[f1]] = tt andMσ[[f2]] = tt.

• Mσ[[∃v r f]] = tt iff for someσ′ s.t.σ ∼v σ′ , Mσ′ [[f]] = tt.

• Mσ[[skip]] = tt iff |σ| = 1, i.e.σ has length 1.

• Mσ[[f1 ; f2]] = tt iff (exists a k, s.t. Mσ0...σk
[[f1]] = tt and ((σ is infinite and

Mσk...[[f2]] = tt) or (σ is finite andk ≤ |σ| andMσk...σ|σ|
[[f2]] = tt))) or (σ is infinite

andMσ[[f1]]).

I would like to note here that the essential operator “chop-star” is expressible, i.e. I can

infer its formal semantics from the definitions above.

3.4 Tempura

As it will become clear later in chapter 4, Tempura, being a strict subset of ITL, is expres-

sive enough for the purposes of Verilog’s semantics. I will give here the syntax and the

formal semantics of this executable subset.

3.4.1 Syntax of Tempura

The syntax of Tempura is defined in table 3.2 whereµ is an integer value,a, a1, etc.

are integer static variables (don’t change within an interval), A, A1, etc. are integer state

CHAPTER 3. A Unifying Methodology for Codesign 38

variables (can change within an interval),|v| is length of a vector,b, b1, etc. are boolean

static variables,B, B1, etc. are boolean state variables,p is a predicate symbol,l, l1, etc.

are vector static variables,L, L1, etc. are vector state variables,[e1, . . . , en] is a vector of

n expressions,v[s] is an element of a vector,v can be any static or state (including scalar,

boolean or vector) variable,gs is a function symbol with scalar range,gv is a function

symbol with vector range andn is a natural value. I will useintegerandlist as synonyms

Scalar s ::= µ | a | A | gs(e1, . . . , en) | |v|

Boolean b ::= b | B | empty | p(e1, . . . , en) | ¬b | b1 ∧ b2

Vector v ::= l | L | [e1, . . . , en] | gv(e1, . . . , en)

Expression e ::= s | b | v | v[s]

Formulae f ::= b | f1 ∧ f2 | ∃v r f | skip | f1 ; f2 | if b then f1 else f2

Table 3.2: Syntax of Tempura

for scalarandvectorhenceforth. Also, when I talk about variable I will understand both

integer and list variable.

Any boolean expression is astateformula. In Tempura,negation“¬” is defined over

state formulas only. The operator “empty” is a special state formula.

The current Tempura tool [93] includes some other constructs for input, outputand

constructs forrandomnumbers which we will omit here for simplicity. I will denotethe

language of Tempura defined by table 3.2 withLT . Many interesting operators can be

expressed with this minimalistic basic set. Some of them are:

• operator next over formulae:©f =̂ skip ; f .

• operator next over expressions:X = ©e, iff ∃x r X = x ∧ ©(x = e) whereX and

CHAPTER 3. A Unifying Methodology for Codesign 39

x are state and static variables respectively.

• operator if-then:if b then f =̂ if b then f else true.

• operator more:more=̂ ¬empty.

• operator weak next over formulae:©w f =̂ if morethen ©f .

• operator weak next over expressions:X = ©w e, iff ∃x r X = x ∧ ©w(x = e) where

X andx are state and static variables correspondingly.

• unit assignment:X := e =̂ (©X) = e.

• operator always:2f =̂ f ∧ ©w 2f , 2a f =̂ 2(f ; true).

• operator keep:keepf =̂ 2a (©w f).

• operator gets:X getsY =̂ keep(X := Y).

• operator eventually in Tempura:3t b =̂ if b then true else ©3t b. I would like

to emphasise here that the definitions of3 in ITL as given in section 3.3 and3t in

Tempura are very different. In general,3 captures finite intervals only, while3t

includes the infinite behaviour as well.

• operator infinite:inf =̂ 3t false.

• operator while:while b do f =̂ if b then [f ; (while b do f)] else empty.

• operator iteration, also called “chopstar”:f ∗ =̂ if morethen (f ; f ∗) else empty.

CHAPTER 3. A Unifying Methodology for Codesign 40

• bounded universal quantifier:∀v < s r f(v) =̂ f(0) ∧ . . . ∧ f(s − 1).

Similarly, I can give several useful constructs on lists.

• concatenation:L = L1 + L2, iff |L| = |L1| + |L2| ∧ ∀i < |L1| + |L2| r if i <

|L1| then L[i] = L1[i] else L[i] = L2[i − |L1|].

• sublist:R = L[s1..s2], iff if (0 ≤ s1 ∧ s1 ≤ s2 ∧ s2 ≤ |L|) then {|R| = s2 − s1 ∧

∀i < (s2 − s1) r R[i] = L[s1 + i]}.

• head and tail:L = [a|R], iff |L| = 1 + |R| ∧ a = L[0] ∧ R = L[1..|L|].

It turns out that the primitives given in table 3.2 can generate a rich set of constructs turn-

ing LT into ageneral purpose programming language with sound semantics. Examples

can be found in [93, 64].

3.4.2 Semantics of Tempura

The formal semantics ofLT can be easily derived from the ITL semantics given in sec-

tion 3.4 and [93, 64]. Here I will restrict ourselves to the parts ofLT that are not covered

there, i.e. length of a list and list member selection.

• Mσ[[|[e1, . . . , en]|]] = Mσ[[n]].

• Mσ[[[e1, . . . , en][s]]] = Mσ[[es]].

CHAPTER 3. A Unifying Methodology for Codesign 41

3.4.3 Tempura with Memory

Having in mind that I will have to reason about memory, i.e. registers in hardware, I

will need an appropriate formal concept that can grasp the properties of, and will be my

abstraction for,memory. I recognise the fact that ITL and Tempura do not havememory

variablesin its basic syntax and semantics. Research [32] has pointedout the need for

framing in ITL which would have solved this problem. As it hasbeen shown before,

framing is generally considered a difficult issue so I need something quicker and easier to

suit my purpose. I will denote these memory variables as followsA, B, V, etc.

For each memory variable of typeT , I will have a normal state variableV of the same

typeT holding the value ofV and a normal boolean state variablenewV which would tell

me if V has changed its value in the transition between the last and the current state.

Typically I would want to use formulas like

(3.1) ∃V r (f1 ∧ f2)

whereV is a memory variable shared between the parallel formulasf1 andf2. Basic mem-

ory property is to keep its value unless it has been changed explicitly via an assignment op-

erator “:=” . Normal Tempura variables do not have this feature and are free to change at

any state where they are not given a value. For example, consider an interval of three states

namelyσ = σ0, σ1, σ2 and a formula∃V r (V = 0 ∧ skip);skip;(V = 0 ∧ empty) which

evaluates to true overσ. Obviously,V ’s value is bounded to 0 in statesσ0 andσ2 while in

CHAPTER 3. A Unifying Methodology for Codesign 42

contrast it is completely unspecified and free inσ1. The obvious way to solve this problem

is to use Tempura’s constructstable V =̂ V getsV as in∃V r V = 0 ∧ stable V . How-

ever, this is correct only ifV ’s value is not allowed to be changed by a parallel process.

In the case of (3.1) though, I cannot usestable V within f1 or f2 becauseV is shared

between the two concurrent formulas and each one of them may changeV ’s value at any

point.

Fortunately I am able to transform (3.1) into a classical ITLformula. My strategy is

to enrich the Tempura syntax by adding a new type of expressions, i.e. any memory vari-

able is now a valid expression and the existential quantifier∃ can quantify over the new

memory variables. The language ofLT with this new type of expressions and formulas

will be denoted asLT+ .

The next step is to use Hale’s mechanism “inertia” and following [32] I define a trans-

lation from a formulaf with a memory variableV. For every such variable I will introduce

two state variablesV andnewV . Now I can transformf into

∃∆ rφ(V, V, ∆, f) ∧ 2(∆ = ©w newV) ∧ 2(if ¬∆ then (V = ©w V)).(3.2)

In this context,f [V/V] meansV substitutesV into f andstate stands for a state formula.

φ(V, V, ∆, state) =̂ state[V/V]

CHAPTER 3. A Unifying Methodology for Codesign 43

φ(V, V, ∆,V := e) =̂ ∆ = ¬(V = e[V/V]) ∧ V := e[V/V]

φ(V, V, ∆,V ′ := e) =̂ ∆ = false∧ V ′ := e[V/V]

φ(V, V, ∆, skip) =̂ ∆ = false∧ skip

φ(V, V, ∆, f1 ; f2) =̂ φ(V, V, ∆, f1) ; φ(V, V, ∆, f2)

φ(V, V, ∆, if bool then f1 else f2) =̂ if bool[V/V] then φ(V, V, ∆, f1)

else φ(V, V, ∆, f2)

φ(V, V, ∆, ∃V r f) =̂ ∆ = false∧ ∃V r f

φ(V, V, ∆, ∃V ′
r f) =̂ ∃V ′

r φ(V, V, ∆, f)

φ(V, V, ∆, f1 ∧ f2) =̂ ∃∆1, ∆2
r2(∆ = ∆1 ∨ ∆2) ∧ φ(V, V, ∆1, f1) ∧

φ(V, V, ∆2, f2)

After the definition of the translation, I will show that the so constructed memory variables

do have the basic “memory” property I needed, i.e. I can accept them as an abstraction

for memory. In the following theorem I will assume6= as a primitive predicate with the

appropriate semantics.

Theorem 1 If V is a memory variable, then

(skip ∧ true = ©newV) ≡ (V 6= ©V ≡ V 6= ©V)

Proof (Theorem 1) I will start the proof by transformingskip ∧ V 6= ©V following the

CHAPTER 3. A Unifying Methodology for Codesign 44

definition above.

∃x, ∆, ∆1, ∆2
rskip ∧ 2(∆ = ∆1 ∨ ∆2) ∧ x 6= V ∧ [(∆2 = false∧ skip) ; x = V] ∧

2(∆ = ©w newV) ∧ 2(if ¬∆ then V = ©w V)

Expanding the[. . .] brackets leads to

∃x, ∆, ∆1, ∆2
rskip ∧ 2(∆ = ∆1 ∨ ∆2) ∧ ∆2 = false∧ x 6= V ∧ (skip ; x = V) ∧

∆ = ©newV ∧ if ¬∆ then V = ©w V

Now I have to remember thatV 6= ©V ≡ ∃x r x 6= V ∧ (skip ; x = V), therefore I can

transform further

skip ∧ V 6= ©V ∧ ∃∆, ∆1, ∆2
r 2(∆ = ∆1 ∨ ∆2) ∧ ∆2 = false∧

∆ = ©newV ∧ if ¬∆ then V = ©w V

and if I mark

F = ∃∆, ∆1, ∆2
r 2(∆ = ∆1 ∨ ∆2) ∧ ∆2 = false∧ ∆ = ©newV ∧ if ¬∆ then V = ©w V,

then I can write finally

skip ∧ V 6= ©V ≡ skip ∧ V 6= ©V ∧ F

CHAPTER 3. A Unifying Methodology for Codesign 45

Now I will look at F

true = ©newV ⊃ F ≡ ∃∆, ∆1, ∆2
r 2(∆ = ∆1 ∨ ∆2) ∧ ∆2 = false∧ ∆ = true

≡ true

Alternatively,

false= ©newV ⊃ F ≡ V = ©w V

and therefore

true = ©newV ⊃ skip ∧ V 6= ©V ≡ skip ∧ V 6= ©V

while

false= ©newV ⊃ skip ∧ V 6= ©V ≡ skip ∧ V 6= ©V ∧ V = ©w V ≡ false

From this I can conclude the theorem. �

The theorem shows that thenewV always picks up the states whereV has changed

value, i.e. an event. Also, the equivalence stated by the theorem guarantees that if the

value ofV is not explicitly changed, then it will stay the same, i.e. itdoes memorise the

value.

CHAPTER 3. A Unifying Methodology for Codesign 46

Before I go further I would like to make the important remark that the semantics of

LT + is expressed inLT , i.e.LT + is a syntactical extension only which preserves the

complete axiom system given in [62, 60].

3.5 Compositional Verification

In order to support system development in an optimal way, description techniques for

models of specific system views must be intuitively understandable and be precise enough

to ensure an unambiguous and consistent description of the system. In addition, such a

technique must becompositionalallowing the modular description and verification of the

system.

Compositional verification is provided through anassumption-commitmentstyle frame-

work. The following implication illustrates the use of suchstyle with a systemSys:

w ∧ As ∧ Sys ⊃ Co ∧ fin w′.

This states that if the state formulaw is true in the initial state and the assumptionAs is

true over the interval in whichSys is operating, then the commitmentCo is also achieved.

Furthermore the state formulaw′ is true in the interval’s final state or is vacuously true if

the interval does not terminate.

In general, the assumptionAs and the commitmentCo can be arbitrary ITL formulas.

CHAPTER 3. A Unifying Methodology for Codesign 47

However, when reasoning about a system built out of sequential parts, it is advantageous

to consider certain kinds of assumptions and commitments which readily lend themselves

to suitable proof rules.

More specifically, I require thatAs andCo be respective fixpoints of the ITL operators

2a and “∗” as is now shown:

As ≡ 2a As , Co ≡ Co∗ .

The first equivalence ensures that if the assumptionAs is true on an interval, it is also

true in all subintervals. The second ensures that if zero or more sequential instances of

the commitmentCo span an interval,Co is also true on the interval itself.

The temporal formula2(K = 1) is an example of a suitable assumption while some

formulas such asstable K can be used both as assumptions and commitments as these

are precisely the fixpoints of the ITL operatorkeep. For assumptions and commitments

obeying the above, the following derivable proof rule is sound:

w ∧ As ∧ Sys ⊃ Co ∧ fin w′

w′
∧ As ∧ Sys ′ ⊃ Co ∧ fin w′′

w ∧ As ∧ (Sys ; Sys ′) ⊃ Co ∧ fin w′′ .

(3.3)

Here is an analogous rule for decomposing a proof for zero or more iterations of a formula

CHAPTER 3. A Unifying Methodology for Codesign 48

Sys :

w ∧ As ∧ Sys ⊃ Co ∧ fin w

w ∧ As ∧ Sys∗ ⊃ Co ∧ fin w .

(3.4)

Compositional reasoning aboutlivenessis also possible.

3.6 Formal Refinement and Analysis

3.6.1 Refinement Calculus

The transformation process in each step (see Figure 3.1) is based on a refinement calculus

that allows me to systematically calculate the desired system description. The refinement

relationv is defined on a system: A systemX is refinedby the systemY , denotedX v Y ,

if and only ifY ⊃ X . A set of sound refinement laws have been derived [13] to transform

an abstract system specification into concrete systems.

Two observations are in order:

1. Once I have completed the formal specification phase, various properties could be

proven about the specification itself. This can provide an extra assurance that the

final specification meets the required informal requirements.

2. At each refinement step, I can simulate the resulting (sub-)system. This gives some

guidelines on the choice of the subsequent refinement rules.

CHAPTER 3. A Unifying Methodology for Codesign 49

The following basic law states that the operators in ITL are monotonic with respect to

the refinement relation. Monotonicity means that the ITL refinement calculus is compo-

sitional.

Law 1 (Monotonicity)

Let fi be an ITL formula then

(v −1) If f0 v f1 and f1 v f2 then f0 v f2

(v −2) If f0 v f1 and f2 v f3 then (f0 ∧ f2) v (f1 ∧ f3)

(v −3) If f0 v f1 and f2 v f3 then (f0 ∨ f2) v (f1 ∨ f3)

(v −4) If f1 v f2 then f0 ; f1 v f0 ; f2

(v −5) If f1 v f2 then f1 ; f0 v f2 ; f0

(v −6) If f0 v f1 then f∗
0 v f∗

1

(v −7) If f0 v f1 then ∀v q f0 v ∀v q f1

Following are some useful refinement rules for refining ITL specifications into Tem-

pura code. The conditional is introduced with the followingrule.

Rule 1 (If then else)

(if −1) (f0 ∧ f1) ∨ (¬f0 ∧ f2) v if f0 then f1 else f2

The following rules describes the characteristics of the chop construct (“;”). Chop has

empty as a unit, is associative and distributes over nondeterministic choice and condi-

CHAPTER 3. A Unifying Methodology for Codesign 50

tional

Rule 2 (Chop)

(; − 1) empty ; f ≡ f ≡ f ; empty

(; − 2) (f1 ; f2) ; f3 ≡ f1 ; (f2 ; f3)

(; − 3) f1 ; (f2 ∨ f3) ; f4 ≡ (f1 ; f2 ; f4) ∨ (f1 ; f3 ; f4)

(; − 4) (if f0 then f1 else f2) ; f3 ≡ if f0 then (f1 ; f3) else (f2 ; f3)

The following rules introduce the while loop and the non-terminating loop

Rule 3 (While)

(while −1) (f0 ∧ f1)
∗ ∧ fin ¬f0 v while f0 do f1

(while −2) f∗
1 v f∗

1 ∧ inf ≡ while true do f1

The following are some rules for the parallel construct∧.

Rule 4 (Parallel)

(∧ −1) f0 ∧ f1 ≡ f1 ∧ f0

(∧ −2) f0 ∧ (f1 ∨ f2) ≡ (f0 ∧ f1) ∨ (f0 ∧ f2)

(∧ −3) (f0 ∧ f1) ∧ f2 ≡ f0 ∧ (f1 ∧ f2)

(∧ −4) (if f0 then f1 else f2) ∧ f3 ≡ if f0 then (f1 ∧ f3) else (f2 ∧ f3)

CHAPTER 3. A Unifying Methodology for Codesign 51

3.6.2 Analysis

Fundamentally, I can use the approach given in [88] to capture a possible behaviour of a

running (sub-)system. Once the behaviour is captured then Ican assert if such behaviour

satisfies a given property, i.e. runtime validation and testing. And as a property is a set

of behaviours,satisfactionis achieved by checking if the captured system’s behaviour

is an element of this set. I am not dealing here with the formalverification of properties

which requires that all possible behaviours of system satisfy the properties. I am only con-

cerned with validating properties which requires that onlyinteresting behaviours satisfy

the properties.

The states of a (sub-)system to be analysed are captured by insertingassertion points

at suitably chosen places. These divide the system into several code-chunks. Properties

of interests are then validated for this behaviour.

The general framework for analysis can be described as follows.

1. Establish all desirable properties of the system under consideration and express

them in Tempura.

2. Identify suitable places in the code and insert assertional points.

3. Using Tempura, check that the behaviour satisfies the desired properties.

Establishing system properties can be a hard task, however Isuggest to follow the main

characterisation of properties given above, namely safety, liveness and timing properties.

Obviously, some level of understanding of the (sub-)systemunder consideration is as-

CHAPTER 3. A Unifying Methodology for Codesign 52

sumed. These properties could be invariants that need to be true at all levels of system’s

abstraction.

The locations of assertion points could be chosen, for example, at the entry and exit

points of a procedure or function. In this case assertions are in factpre- andpost-condi-

tions, and what I am asserting is: If the system starts at a state satisfying thepre-condition

then it terminates properly in a state satisfying thepost-condition.

Tempura

Server

Tempura
Interpreter

System to Analyse

Properties

Result

Figure 3.2: Basic Functions

I can use the existing tool Tempura [88], that supports the approach described above.

Figure 3.2 shows the general structure of the tool. The inputs are the system description

(either source code plus assertion points or an ITL specification) and the properties I

want to check. The result of the analysis is whether the properties hold for the system.

Optionally the behaviour of the system can be animated. Currently the tool can analyse

C, Verilog and Tempura programs. The tool is available from [93] and several examples

of the tool in action can be found in [12, 88].

CHAPTER 3. A Unifying Methodology for Codesign 53

3.7 Summary

I presented my overall strategy for codesign in this chapter. It integrates (co-)simulation

with formal verification and refinement. Assumption/commitment pairs of formulas form

the base of my methodology and this allows me to achieve a highly compositional for-

malism.

The foundation of my work is ITL. I give here the formal syntaxand semantics for

both ITL and its executable subset Tempura. I also argue the need for memory variables

in ITL and Tempura and I propose a way to introduce such variables in the formalism. I

also prove Theorem 1 which formally supports and justifies the construction of memory

variables.

Also, I justify the claim that ITL has some powerful compositional expressiveness

through assumption/commitment pairs. I give some compositional proof rules 3.3 and 3.4

and I show how they could be employed to prove some important liveness properties.

I choose stepwise refinement [13] as a major vehicle for development. It is well pub-

lished and I include it here for completeness reasons.

Simulation and analysis are tightly integrated in my methodology. I present the basic

functions of the Tempura tool with a general view of how it could be used to test for the

validity some important properties.

Chapter 4

Denotational Semantics for Verilog

After justifying the need for an ITL based semantics for Verilog in the

previous chapters, here I discuss the details of constructing such a se-

mantics. I define a powerful and expressive core of the HDL andI give

the translation between Verilog andLT + .

4.1 Introduction

The need for a formal and well founded semantics of a programming or hardware descrip-

tion language is widely accepted. I will consider two types of such semantics:Denota-

tional andOperational. They reflect the duality of the usage of programming or hardware

description languages, i.e. I need to both describepropertiesandmachineswhich imple-

ment, or compute, these properties. This chapter treats thedenotational semantics and

Chapter 5 defines the operational semantics of Verilog.

54

CHAPTER 4. Denotational Semantics for Verilog 55

It is a widely accepted that properties are best reasoned about in denotational terms

and machines are best described by operational means. Of course, the correspondence be-

tween the denotational and operational semantics guarantees the uniformity of my formal

reasoning and boosts my confidence in the trustworthiness ofmy work. The proof of the

equivalence between the two semantics is given in chapter 6.

Modern hardware design is largely based on using HDLs and once I have the se-

mantics of the HDL, formal verification comes within my reach. My approach to hard-

ware/software codesign facilitates some existing technologies for hardware synthesis based

on Verilog HDL. The transition between a TEMPURA-H specification and a Verilog spec-

ification (see figure 3.1 on page 27) must be based on sound technique such as refinement

and the definition for the refinement relation must be

(4.1) SpecTEMPURA-H v SpecVerilog, iff SpecVerilog ⊃ SpecTEMPURA-H

Obviously, the need for a sound definition of the last implication drives my desire for

denotational, ITL-based, semantics for the Verilog HDL [21].

4.1.1 Verilog Specifics

Current HDLs raise considerable difficulties in understanding their semantics and Verilog

is a typical example. There were several attempts [67, 30, 90, 89] for different styles of

semantics for Verilog in the literature. Most of them compromise with the complexity

CHAPTER 4. Denotational Semantics for Verilog 56

of the language, others choose to use several different semantics for different levels of

abstraction. There are two main reasons for the lack of formal semantics of Verilog.

Concurrency Unlike most of the software, hardware is naturally concurrent. In a hard-

ware system all subsystems work in parallel and this level ofparallelism must be

matched by the HDL of choice.

Reactivity Again in contrast to the software, hardware is reactive. Thewhole computa-

tion in hardware comes as a reaction to changes it the environment. Therefore the

notion of event is explicit in hardware design.

Of course, there are some language specifics such asevent cancellation, blockingvsnon-

blockingassignment as well ascontinuous assignment, which has earned Verilog a repu-

tation of adirty language with hard semantics [30].

4.1.2 Semantics Gap within Verilog HDL

As is well known, one can use several abstraction levels whendeveloping a system in Ver-

ilog HDL. TheVerilog Formal Equivalenceproject at Cambridge has been concentrating

on different semantics for the different abstraction levels in Verilog [94, 30]. This differs

from my work since I obtain aunifyingsemantics for the language. A major benefit of

that is my ability tocompositionallyrefine high level ITL specifications down to the RTL

subset of Verilog.

CHAPTER 4. Denotational Semantics for Verilog 57

Sagdeo and Thomas in [71, 80] give detailed design flows wherethe main stages are

the following two:

1. Behavioural design— In a behavioural design one uses procedural constructs such

asbegin-endblock, always statement, eventcontrol and so on. The general syn-

tax of a behavioural specification includesinitial andalwaysstatements, as well as

functionandtaskdeclarations. Since the declarations are instructions to the com-

piler only, I would not consider them here.

2. RTL design— RTL is a restricted subset of Verilog HDL. Data structures that can

be continuously driven and statements that continuously drive them can be used.

Only continuous assignmentstatements are RTL statements.

A third abstraction level is included in [71, 80], namelyGate Level Verilogor Structural

design. The reason I do not consider structural descriptions is that there are commercially

available synthesis tools which transform RTL down to netlists and this step has already

been automated, via several commercially available synthesisers.

The restrictions imposed on RTL specifications imply their synthesisability. However,

behavioural descriptions, including event controls and high level language constructs, are

generally not synthesisable.

According to the design flow given in [71], designers have to transform theBe-

haviouraldescription intoRTLusing their intuition and expert knowledge. At every step

of the design process, simulations and tests are performed to check the correctness of the

CHAPTER 4. Denotational Semantics for Verilog 58

transformations with respect to the requirements. Although these tests can be automated

to a considerable degree, there are many cases when testing only does not provide the

necessary level of correctness. More often than not, crucial test cases are overlooked

which, in the case of critical systems, may result in human lives and/or money being lost.

Probably the Pentium floating point flaw has the highest profile. According to [10, page

19] this error cost $475 million.

4.2 Syntax of Verilog

Here I define the syntax of the language I consider. Only a handful of convenient but non-

essential constructs, such as function and task declarations, are not considered here. All

constructs are given in Backus-Naur Form (BNF) style description and{. . .}+ denotes a

non-empty repetition andbool is a boolean expression. Because of the specifics of Verilog

I consider two syntactic categories namelystatementandatom.

statement ::= empty| η | block assign| non block assign|

eventtrigger | if | while | begin end

empty ::= ε

η ::= @ (e exp) | # exp

block assign ::= v = η exp | v = exp

non block assign ::= v <= # exp1 exp2 | v <= exp

eventtrigger ::= → event

if ::= if (bool) statement else statement

while ::= while (bool) statement

begin end ::= begin {statement; }+ end

Table 4.1: Syntax ofstatement

CHAPTER 4. Denotational Semantics for Verilog 59

A statement is one of the sequential statements of Verilog. These are allstatements

one may find in abegin end block for example. All statements are given in table 4.1.

Theree exp is a boolean expression over event variables,exp is an expression,bool is

a boolean andevent is an event variable normally declared asevent e; in a Verilog

program. The notation for time delays and event controls is standard.

atom ::= assign| always| initial

assign::= assign v = exp | assign # exp1 v = exp2

always::= always statement

initial ::= initial statement

Table 4.2: Syntax ofatom

An atom is the smallest unit of parallelism in Verilog. These are thecontinuous

assignment, its delayed counterpart, always and initial constructs. Both Behavioural and

RTL language constructs are included. Typically a Verilog program is a collection of

atoms with appropriate variable declarations. All atoms run in parallel and share the

variables as well as a common clock. With no loss of generality, we will accept the

following general syntax of a Verilog program.

program ::= module name (∗);

global variables;

atom1;

atom2;

. . .

atomn;

CHAPTER 4. Denotational Semantics for Verilog 60

endmodule

Here∗ is a shortcut forv1, . . . , vn and the Verilog operator “;” does not have the same

semantics as the ITL chop but it is merely a statement separator. The following is an

example of a Verilog program. I will come back to this programin section 4.3.4 where I

will give its translation intoLT + .

program ::= module example ;

reg [3 : 0] a, b, i ;

wire [3 : 0] v ;

assign #5 v = a + b ;

always begin

#10 ;

a <= #1 b ;

b <= #1 a ;

end

initial begin

b = 0 ;

a = 3 ;

i = 0 ;

while (i < 10) begin

#15;

CHAPTER 4. Denotational Semantics for Verilog 61

b = b + 1;

i = i + 1;

end

end

endmodule

4.3 Mapping Verilog ontoLT+

I define a function that translates Verilog constructs intoLT + equivalents, hence giving

semantics for Verilog. The obtained semantics follows a declarative style. The language

of LT + is Tempura enriched with memory variables (see section 3.4.3).

Definition 1 If statement is a valid Verilog statement, then‖statement ‖ gives its

LT + equivalent.

Suppose I have a Verilog specification. It defines a set of atoms with their variable

declarations. Let the following be a Verilog program.

program ::= module name (∗);

global variables;

atom1;

atom2;

. . .

CHAPTER 4. Denotational Semantics for Verilog 62

atomn;

endmodule

Our general idea is to translate all atoms intoLT + formulas and combine them with the

“∧” connective. In doing this, I will have to bear in mind that any Verilog program implic-

itly assumes several other properties such as a clock and non-blocking event scheduling,

which I will have to explicitly specify as additional parallel atoms. Therefore, I will need

to assume that all variables appearing in the left-hand sideof a non-blocking assignment

arex1, . . . , xm. For each variablexi and each individual atomatomj wherexi appears

in such non-blocking assignment I will need a parallel atomNBxi

atomj
and a memory list

variable of non-blocking assignment eventsLxi

atomj
.

‖program ‖ ::=

∃Atom1.active, . . . , Atomn.active,

Global Variables, Disable,

T ime,Lx1

atomj
. . .Lxm

atomk

r

(

Global Variables = ⊥ ∧ clock(Disable) ∧ inf ∧

2(Disable = (Atom1.active ∨ . . . ∨ Atomn.active)) ∧

‖atom1‖ ∧ ‖atom2‖ ∧ . . . ∧ ‖atomn‖ ∧

NBx1

atomj
∧ . . . ∧ NBxm

atomk

)

CHAPTER 4. Denotational Semantics for Verilog 63

I will simply use this specification as illustration only andlater I will give a much more

precise example in section 4.3.4 of a real Verilog program. All Global Variables and the

T ime will be memory variables, whereas for each variablev from the global variables in

the Verilogprogram I will have a memory variableV corresponding to it.

Atomi.active and theDisable variables are normal state variables used for synchroni-

sation andAtomi.active is a boolean variable which is true whenatomi is active. The

bottom “⊥ ” is used to mark an undefined value.

4.3.1 Preliminaries

I will need to specify two important parts of ourLT + model. These are a clock and an

event catching predicate on memory variables.

Explicit Clock I will have an atom calledclock which will keep the time in a global

memory variableT ime. I will need global clock for synchronisation.

clock(Disable) =̂ T ime = 0 ∧

(

while (Disable) do skip;

T ime := T ime + 1

)∗

The clock in my specification has one parameter namely the state variableDisable which

synchronises all atoms. WhenDisable is true then the clock is simply doing nothing, i.e.

CHAPTER 4. Denotational Semantics for Verilog 64

its idle and waiting and some of atoms are busy working. Once all atoms are suspended,

thenDisable turns intofalseand the clock advances the time.

Events For the memory variablesE1, . . . , En I can define the predicate∼ as follows

∼ (E1, . . . , En) =̂ newE1
∨ . . . ∨ newEn

.

This predicate represents events on the memory variables involved.

4.3.2 Statement Semantics

I will start our semantics definition with the specification of all statementsas given in

table 4.1.

Empty Statement The empty statementε is usually neglected. However, it is very im-

portant and I need to give it a semantic meaning. Let me assumethat theε statement, being

a statement from table 4.1, is included in anatom with a status variableAtom.active.

Then, I can write

‖ε‖ =̂ (Atom.active = false) ∧ skip

Delays and Event Control Let me consider now the event control statement in Verilog,

i.e. me assume here that the declarations in the Verilog program includeei as variables

CHAPTER 4. Denotational Semantics for Verilog 65

and for each of them I have a memory variableEi in myLT + formula.

‖@ (e1or , . . . , or en)‖ =̂

while ¬ ∼ (E1, . . . , En) do (‖ε‖)

Of course, the event control statement must be included in anatom with a status variable

Atom.active.

Similarly, the delay statement is a part of an atom with itsAtom.active variable.

‖# exp‖ =̂

∃t r (

t = T ime + exp ∧

while T ime < t do (‖ε‖)

)

Blocking Assignment The blocking assignment has two forms and again in each one

of them I use the corresponding atom’s status variable. The delayed version uses the

semantics ofη which shows the compositional nature of my denotational semantics.

‖v = exp‖ =̂ ((Atom.active = true) ∧ V := exp)

CHAPTER 4. Denotational Semantics for Verilog 66

‖v = η exp‖ =̂ ∃x r (x = exp ∧ (‖η‖ ; ((Atom.active = true) ∧ V := x)))

Non-blocking Assignment With the non-blocking assignment, for every atomatom

and every variablev appearing in the lefthand side of a non-blocking assignment, I will

create another atomNBv
Atom which will run in parallel to the system and will have a

memory list variable of non-blocking assignment eventsLv
Atom. Each non-blocking as-

signment in a normal atom will simply be substituted with update to this list, while the

atomNBv
Atom will simply execute this list when scheduled.

Again the non-blocking assignment has an immediate and a delayed form. Each one of

them may appear in anatom, i.e. I have to take care of its status variable when updating

the event list of non-blocking assignmentsLv
Atom. So, the following are the semantics

of both forms of non-blocking assignment which assumes the additional atomNBv
Atom

running in parallel with the system. Later I give its specification.

‖v <= exp‖ =̂ ((Atom.active = true) ∧

Lv
Atom := Lv

Atom + [[T ime, exp]])

‖v <= # exp1 exp2‖ =̂ ((Atom.active = true) ∧

Lv
Atom := Lv

Atom + [[T ime + exp1, exp2]])

CHAPTER 4. Denotational Semantics for Verilog 67

As I mentioned earlier, the non-blocking assignment assumes a parallel atomNBv
Atom.

I have to specify such an atom for each variable appearing in the lefthand side of a non-

blocking assignment.

NBv
Atom =̂ (

if Disable then skip

else (

Lv
Atom := filter(Lv

Atom, T ime) ∧

∀i < |Lv
Atom|

r if (Lv
Atom[i][0] = T ime) then V := Lv

Atom[i][1]))∗

andfilter is defined as follows

filter(L, t) =̂ (

if |L| = 0 then []

else (if L[0][0] = t then [] else [L[0]]) + filter(L[1..|L|], t))

Event Trigger This construct is very easy. I just change the value of the variable in

someway.

‖ → e‖ =̂ ‖e = e + 1‖

CHAPTER 4. Denotational Semantics for Verilog 68

If, While and Begin end Block Standard semantics for these constructs is adopted for

obvious reasons. In the following,b is a boolean expression in the sense of table 3.2.

‖if (b) statement1 else statement2‖ =̂

if (‖b ‖) then ‖statement1‖ else ‖statement2‖

‖while (b) statement‖ =̂

while (‖b ‖) do ‖statement‖

‖begin statement1 ; (statement) end ‖ =̂

(‖statement1‖ ; ‖begin (statement) end ‖)

4.3.3 Atom Semantics

I now turn our attention to the atoms in table 4.2.

Assign As shown in table 4.2, the form of theassign statement has two forms and

here I will start with the simpler one.

‖assign v = exp(∗)‖ =̂

(2(Atom.active =∼ (∗)) ∧

(if ¬Atom.active then skip else V := exp(∗))∗)

CHAPTER 4. Denotational Semantics for Verilog 69

Informally I have twoLT + statements, namely2(Atom.active =∼ (∗)) and(. . .)∗ work-

ing in parallel. The first one turns theAtom.active variable intotrueany time when there

is a change in the variables in the expression on the righthand side of the assignment, i.e.

it activates the atom at those time points, while the other statement checks if the atom is

active and, if it is, it executes the assignment. Otherwise it stays idle and does askip only.

The second form of theassign statement has a much more complex semantics.

‖assign #exp1 v = exp2(∗)‖ =̂

∃T , Atom.act1, Atom.act2 r

(2(Atom.active = Atom.act1 ∨ Atom.act2) ∧

(if ∼ (∗) then (Atom.act1 = true ∧ T := T ime + exp1)

else (Atom.act1 = false ∧ skip) ∧

if T = T ime then (Atom.act2 = true ∧ V := exp2(∗))

else (Atom.act2 = false ∧ skip)

)∗

)

Here I have three parallel statements in the semantics. Again I have anif ∼ (∗) then . . .

statement which watches for any changes in the variables in the expressionexp2 and

should change occurs, it switches the local variableAtom.act1 to true and assigns new

CHAPTER 4. Denotational Semantics for Verilog 70

value to the local variableT , i.e. it reschedules the assignment for some time in the future.

Otherwise, it keepsAtom.act1 to falseand doesskip, i.e. it stays idle.

The secondif T = T ime then . . . statement watches the time when the assignment

is scheduled and executes it when it elapses.

The third statement is2(Atom.active = Atom.act1 ∨ Atom.act2) which keeps the

whole atom active if any part of it is active, i.e. it synchronises with the global clock and

the other atoms in the system.

Always and Initial The semantics of thealways atom isiterationwhile the semantics

of initial is a single execution.

‖always statement‖ =̂ ‖statement‖∗

With theinitial atom I only have to bear in mind one small complication. This is,

theinitial atom is running in parallel with all the rest and therefore I need its status

variable looked after even when all statements of the atom itself are long gone. Hence

I use2Atom.active = falsesequentially composed at the end of the semantics of the

statement.

‖initial statement‖ =̂ ‖statement‖ ; 2(Atom.active = false)

CHAPTER 4. Denotational Semantics for Verilog 71

4.3.4 Example

Let me consider again the Verilog program that I introduced in section 4.2.

program ::= module example ;

reg [3 : 0] a, b, i ;

wire [3 : 0] v ;

assign #5 v = a + b ;

always begin

#10 ;

a <= #1 b ;

b <= #1 a ;

end

initial begin

b = 0 ; a = 3 ;

i = 0 ;

while (i < 10) begin

#15 ;

b = b + 1 ;

i = i + 1 ;

end

end

CHAPTER 4. Denotational Semantics for Verilog 72

endmodule

For program I will construct theLT + specification which will be its semantics.

Knowing the nature of each atom I will name them asassign, always andinitial. There-

fore, their correspondingactive variables will be namedAssign.active, Always.active,

Initial.active.

‖program ‖ =

∃Assign.active, Always.active, Initial.active, Disable,

A,B, I, T ime,

LA
Always,L

B
Always

r

(A = B = I = V = ⊥ ∧ LA
Assign = LB

Assign = [] ∧ clock(Disable) ∧

2(Disable = (Assign.active ∨ Always.active ∨ Initial.active)) ∧

inf ∧ ‖assign ‖ ∧ ‖always ‖ ∧ ‖initial ‖ ∧

NBA
always ∧ NBB

always

)

Having in mind that theclock has been specified previously, I will go straight to the spec-

ifications for‖assign ‖, ‖always ‖, ‖initial ‖, NBA
always andNBB

always . According

to the definitions above these specification will be as follows.

CHAPTER 4. Denotational Semantics for Verilog 73

Theassign atom takes care of itsactive variableAssign.active which is a global

state variable for the whole formula and is the synchronising link between the atom itself

and the clock.

‖assign ‖ =

∃T , Assign.act1, Assign.act2 r

(2(Assign.active = (Assign.act1 ∨ Assign.act2)) ∧

(if ∼ (A,B) then (Atom.act1 = true ∧ T := T ime + 5)

else (Atom.act1 = false ∧ skip) ∧

if T = T ime then (Atom.act2 = true ∧ V := A + B)

else (Atom.act2 = false ∧ skip))∗)

The next atom is thealways atom. It also looks after its globalAlways.active

variable and it sequentially composes several other behavioural statements. The following

LT + specification also sequentially composes their equivalents.

‖always ‖ =

(

∃t r (

t = T ime + 10 ∧

CHAPTER 4. Denotational Semantics for Verilog 74

while T ime < t do ((Always.active = false) ∧ skip)

);

((Always.active = true) ∧

LA
Always := LA

Always + [[T ime + 1,B]]

);

((Always.active = true) ∧

LB
Always := LB

Always + [[T ime + 1,A]]

);

)∗

Next comes the semantics for theinitial atom which also is a sequential compo-

sition of several behavioural statements. Those have been translated inLT+ and their

semantics have been sequentially composed.

‖initial ‖ =

(

(Initial.active = true ∧ B := 0);

(Initial.active = true ∧ A := 3);

(Initial.active = true ∧ I := 3);

CHAPTER 4. Denotational Semantics for Verilog 75

while (I < 10) do (

∃t r (

t = T ime + 15 ∧

while T ime < t do ((Initial.active = false) ∧ skip)

);

(Initial.active = true ∧ B := B + 1);

(Initial.active = true ∧ I := I + 1);

);

) ; 2(Initial.active = false)

Now I will need to turn my attention on the atoms that implement the behaviour of the

non-blocking assignments. They are

NBA
always = (

if Disable then skip

else (LA
always := filter(LA

always , T ime) ∧

∀i < |LA
always |

r if (LA
always [i][0] = T ime) then A := LA

always [i][1])

)∗

CHAPTER 4. Denotational Semantics for Verilog 76

Of course the same stands forNBB
always

NBB
always = (

if Disable then skip

else (LB
always := filter(LB

always , T ime) ∧

∀i < |LB
always |

r if (LB
always [i][0] = T ime) then B := LB

always [i][1])

)∗

and the functionfilter has been defined previously.

Now, after I have obtained the denotational semantics forprogram , I can show some

simple properties about it. In the following I will useσ |= f instead ofMσ[[f]] = tt as

given in section 3.3.2. For example, I can quickly prove the following implication

∼ (A,B) ∧ skip ; 2a ¬ ∼ (A,B) ∧ 23T ime := T ime + 1 ∧

‖assign ‖ ⊃ 3V := A + B

which says that ifA or B change and then they stay the unchanged for sufficiently long

time and if the time continues to tick, then theassign statement assigns the appropriate

values to the appropriate variable. The argument is very simple. Let me say that prereq-

uisite holds for an intervalσ. This means that in the first stateσ0 |=∼ (A,B) which leads

CHAPTER 4. Denotational Semantics for Verilog 77

to

σ0 |= if ∼ (A,B) then (Atom.act1 = true ∧ T := T ime + 5)

else (Atom.act1 = false ∧ skip) ≡

(Atom.act1 = true ∧ T := T ime + 5)

However, since in the prerequisite I also haveskip ; 2a ¬ ∼ (A,B), I can say that for the

rest of the interval

σ1, . . . |= if ∼ (A,B) then (Atom.act1 = true ∧ T := T ime + 5)

else (Atom.act1 = false ∧ skip) ≡

(Atom.act1 = false ∧ skip)

So, I know thatσ1 |= T = T ime+5, T is a local variable and it is not changed anywhere

else, i.e. its value will be stable andσ |= 23T ime := T ime+1, therefore I can conclude

σ |= 3T = T ime, i.e.

CHAPTER 4. Denotational Semantics for Verilog 78

σ |=3(if T = T ime then (Atom.act2 = true ∧ V := A + B)

else (Atom.act2 = false ∧ skip) ≡

(Atom.act2 = true ∧ V := A + B))

which proves the implication.

This simple exercise demonstrates that the semantics for the assign statement in-

deed assigns the appropriate expression to the appropriatevariable. The usefulness of

the denotational semantics is self-evident when properties of Verilog programs need to be

proven.

4.4 Summary

In this chapter I have defined the syntax of Verilog HDL and I gave the denotational se-

mantics for it by translating all Verilog programs intoLT+. All constructs of the language

are treated and a small example is provided. At the end I proved a simple property about

the denotational semantics of the sample program from the example. This supports the

usefulness of my denotational semantics.

Chapter 5

Operational Semantics for Verilog

Here I present my operational semantics for Verilog and I support my

findings with several healthiness conditions. I conclude with an exam-

ple of simulation which represents a run of the operational semantics

over a simple Verilog program.

5.1 Introduction

As I mentioned earlier, the duality of a programming or hardware description language

consists of the necessity for describing both properties and machines that compute these

properties. This results in duality of the underlying semantics for my language of choice,

in my case, the Verilog HDL. In chapter 4 I gave a denotationalsemantics for Verilog

based onLT+ , my conservative extension of Tempura while here I will focus on the

other aspect of the language — the operational semantics of Verilog. Of course, later on

79

CHAPTER 5. Operational Semantics for Verilog 80

in chapter 6 I will show the uniformity in my two approaches byproving the equivalence

between the denotational and the operational semantics.

Manydifficult language constructs are treated in both the Behavioural andRTL parts.

The approach used allows quick expansion of the treated language up to the limits of full

Verilog as described in [80, 71] and beyond.

The semantics is readily implementable into a real simulator and, unlike most current

Verilog simulators, it isfully parallel which eliminates all side effects caused by imple-

menting parallelism via non-determinism in Verilog. I havealso included a small example

which supports the usefulness and the practical benefit of mysemantics.

The correctness of the proposed semantics is backed by several healthiness conditions.

These conditions are by no means complete and can easily be extended.

A recent paper [89] on semantics for Verilog has considered atrue subset of the lan-

guage. In fact, the subset described there is smaller than Behavioural Verilog and does

not mention RTL at all.

The Verilog Formal Equivalence Project at [94, 30] studies different semantics at dif-

ferent abstraction levels of Verilog HDL. Although the framework there is consistent and

sound, the differences in the semantics results in differences in the specification languages

and this hampers the refinement. The subsetV0 studied in this project is a considerable

advance including Behavioural as well as RTL constructs. However, repeatedly I see lack

of attention devoted to very difficult specifics of Verilog like delayed continuous assign-

mentanddelayed procedural assignment.

CHAPTER 5. Operational Semantics for Verilog 81

5.2 My Contribution

Here I consider a powerful and expressive core of Verilog given in the tables 4.1 on

page 58 and 4.2 on page 59. Only a handful of convenient but non-essential constructs

such ascase -like statements and function and task declarations are omitted. I would

like to add here that these constructs have very trivial semantics and can be incorporated

easily into my framework. In contrast, all significantBehaviouralandRTLconstructs are

included and this gives a solid basis for the whole language with no semantic gaps.

A major benefit of an operational style semantics for Verilogis the applicability of

my work as aroadmapfor a simulator of the language. The semantics described here is

fully parallel which differs from most of the available simulators. The Verilog simulators

“in-use” at the moment implement parallelism via non-determinism. This approach has

obvious side effects and all texts on Verilog strongly discourage the active use of the

sequential nature of the simulators. A truly parallel operational semantics to Verilog

eliminates these side effects.

As well as giving an example of simulation later, I seek reassurance in the validity of

my work here by proving somehealthiness conditionsand in addition to this I show the

correspondence between the denotational and the operational semantics given here. The

healthiness conditions given at the end of the chapter are byno means complete and can

be expanded if necessary.

CHAPTER 5. Operational Semantics for Verilog 82

5.3 Structural Operational Semantics

Following Plotkin [68] and Mosses [59] I use the notions of Structural Operational Se-

mantics (SOS) and Labelled Transition Systems (LTS) to describe the semantics of Ver-

ilog. Conventional SOS employs LTS which in turn is a structure of a configuration set, a

set of terminal configurations, a set of labels and a transition relation. In my framework

we define aconfiguration, and astep functionwhich represents the transition relation.

The absence of an explicit set of terminal configurations represents my belief that

hardware, which Verilog models, has no “terminal” state. Computation in hardware is

modelled as a sequence of configurations and the sole aim is toachieve a “stable” config-

uration. If such a configuration is achieved, the system simply keeps the state unchanged

(stuttering). In this sense, “terminal” configuration for hardware is equivalent to power

failure.

I also note that instead of a set of labels which determines the transition relation, I use

two functions namelyhead andtail. Their purpose is to play the role of a parser for the

language. Fundamental to this approach is that it facilitates a possible implementation of

this operational semantics into a real simulator.

5.4 Operational Semantics of Verilog

The syntax of Verilog was given by tables 4.1 and 4.2. However, in the following, I will

need yet another syntactic category, namely anAtom which is needed in the technical

CHAPTER 5. Operational Semantics for Verilog 83

Atom ::= statement | atom| statement ; Atom

Table 5.1: Syntax ofAtom

details of the definition of operational semantics. In essence, anAtom represents anatom

being executed. It gives me a partially completedatom stripped out of the statements that

have been finished.

As mentioned earlier, I need to define a set of configurations.

Definition 2 A configuration will be denoted by

(T, ((Atom1, bool1), .., (Atomn, booln)), V, (E1, .., En))

where:

• T is atime variable, i.e. a clock

• Atomi is what is left of thei-th atom to be executed

• booli is a boolean expression indicating ifAtomi will schedule any events for the

next configuration

• V = {(variable, value, new)} is a set variables and

– variable is a name,

– value is its associated current value and

– new is a boolean indicating if this particular variable has a newvalue.

CHAPTER 5. Operational Semantics for Verilog 84

• Ei = (EA
i , ENB

i) is a tuple ofActiveandNon-Blockingevents for thei-th atom

• Ej
i = {(when, what)} a finite set of tuples representing the event and

– when is a boolean expression, a guard of the event and

– what is Verilog statement to be executed at the event.

In a configuration, the time variable and the setV form the system’s state. It might be of

interest to mention here the intuition behind an event of thetype(when, ε) which repre-

sents an empty event. For each configuration I define an interpretation of the variables,

such that‖variable‖ = value, where(variable, value, new) ∈ V . This allows me to cal-

culate the expressions in Verilog. Also,‖.‖ defines a set function↑ (E) giving the set of

enabled events inE. An evente ∈ E is enabled in a configurationc, iff ‖when(e)‖ = true

and it is disabled otherwise. I denote↑ (E) = {e|e ∈ E ∧ ‖when(e)‖ = true} and

↓ (E) = E\ ↑ (E).

For every Verilog program with atomsatomi I need to define a start configuration.

This would represent the configuration at time 0 and is as follows

(0, ((atom1, true), . . . , (atomn, true)), { ⊥ }, (∅2, . . . , ∅2)).

Here{ ⊥ } is a set of variables withundefinedvalues. It represents thex value in a

Verilog simulator.

I will need two functionshead andtail to define the step. The functionhead gives

CHAPTER 5. Operational Semantics for Verilog 85

me the current statement to be executed. In the followingη is defined in table 4.1.

head : Atom → {ε, block assign, nonblock assign,η, assign }

head(ε) =̂ ε

head(assign body) =̂ assign , wherebody is the body of the assign statement

head(always statement) =̂ head(statement)

head(initial statement) =̂ head(statement)

head(statement ; Atom) =̂ head(statement)

head(η) =̂ η

head(v = exp) =̂ v = exp

head(v = η exp) =̂ v = η exp

head(v <= exp) =̂ v <= exp

head(v <= #exp1 exp2) =̂ v <= #exp1 exp2

head(→ event) =̂ event = event + 1

head(if (bool) statement1 else statement2) =̂

=̂






head(statement1), iff ‖bool ‖ = true

head(statement2), otherwise

head(while (bool) statement) =̂






head(statement), iff ‖bool ‖ = true

ε, otherwise

head(begin statement1 ; {statement} end) =̂ head(statement1)

CHAPTER 5. Operational Semantics for Verilog 86

When the current statement has been identified I will need to remove it and this is what

tail does. It simply takes the rest of theAtom and prepares it for the next iteration.

tail : Atom → Atom

tail(ε) =̂ ε

tail(assign body) =̂ assign , wherebody is the body of the assign statement

tail(always statement) =̂ tail(statement) ; always statement

tail(initial statement) =̂ tail(statement)

tail(statement ; Atom) =̂ tail(statement) ; Atom

tail(η) =̂ ε

tail(v = exp) =̂ ε

tail(v = η exp) =̂ ε

tail(v <= exp) =̂ ε

tail(v <= #exp1 exp2) =̂ ε

tail(→ event) =̂ ε

tail(if (bool) statement1 else statement2) =̂

=̂






tail(statement1), iff ‖bool ‖ = true

tail(statement2), otherwise

CHAPTER 5. Operational Semantics for Verilog 87

tail(while (bool) statement) =̂

=̂






tail(statement) ; while (bool) statement, iff ‖bool ‖ = true

ε, otherwise

tail(begin statement1 ; {statement} end) =̂ tail(statement1) ; {statement}

Thehead andtail functions are in effect aparserfor Verilog.

Let me now have a configuration

c = (T, ((Atom1, bool1), . . . , (Atomn, booln)), V, (E1, . . . , En)).

Forc I have also an interpretation‖.‖ defined by the setV and a set function↑ (E) giving

the set of enabled events inE. ↑ (.) uses‖.‖ to evaluate the event guardswhen(.). For

that setup I will define four step tests.

• τ0 =̂↑ (
⋃

i,j Ej
i) = ∅ ∧

∨
i ‖booli‖

• τ1 =̂↑ (
⋃

i,j Ej
i) = ∅ ∧

∧
i ¬‖booli‖

• τ2 =̂↑ (
⋃

i E
A
i) = ∅ ∧↑ (

⋃
i E

NB
i) 6= ∅

• τ3 =̂↑ (
⋃

i E
A
i) 6= ∅

The step tests determine the type of each step. As it will become clear later,τ0 is true

in the start configuration only,τ1 picks up time advancing steps,τ2 is for the activation

CHAPTER 5. Operational Semantics for Verilog 88

of events associated with non-blocking assignments andτ3 is for the actual computation

steps.

Before I define the transition step, I will give some notation. If vi are all variables

in exp(v0, . . . , vn), then I will write exp(∗) instead. The special predicate∼ is true over

variables which have just changed their values and is definedas follows:

• ∼ (v0) ⇔ newv0
= true, where(v0, value, newv0

) ∈ V .

• ∼ (v0, . . . , vn) ⇔∼ (v0, . . . , vn−1) ∨∼ (vn).

The transition step functionStep(c) must find a successor forc and is defined as follows.

• If τ1 = true, then

Step(c) = (T + 1, ((Atom1, bool1), . . . , (Atomn, booln)), V, (E1, . . . , En))

• If τ2 = true, then

Step(c) = (T, ((Atom1, bool1), . . . , (Atomn, booln)), V, (E ′
1, . . . , E

′
n)),

whereE ′
i = (EA

i ∪ ↑ (ENB
i), ↓ (ENB

i))

• If τ0 ∨ τ3 = true, then

Step(c) = (T, ((Atom′
1, bool

′
1), . . . , (Atom′

n, bool′n)), V ′, (E ′
1, . . . , E

′
n)),

CHAPTER 5. Operational Semantics for Verilog 89

where

Atom′
i =






Atomi, if ¬‖booli‖

tail(Atomi), otherwise

and

– if ¬‖booli‖, thenbool′i = booli

– if ‖booli‖ ∧ head(Atomi) P ε1, thenbool′i = false

– if ‖booli‖ ∧ head(Atomi) P assign v = exp(∗), thenbool′i =∼ (∗)

– if ‖booli‖ ∧ head(Atomi) P assign # exp1(∗1) v = exp(∗), then

bool′i =∼ (∗)

– if ‖booli‖ ∧ head(Atomi) P # exp, thenbool′i = (T = ‖T + exp‖)

– if ‖booli‖ ∧ head(Atomi) P @ e exp(∗), thenbool′i =∼ (∗)

– if ‖booli‖ ∧ head(Atomi) P v = exp, thenbool′i = (T = ‖T‖)

– if ‖booli‖ ∧ head(Atomi) P v = # exp1 exp, thenbool′i = (T = ‖T + exp1‖)

– if ‖booli‖ ∧ head(Atomi) P v = @ (exp1(∗)) exp, thenbool′i =∼ (∗)

– if ‖booli‖ ∧ head(Atomi) P v <= exp, thenbool′i = (T = ‖T‖)

– if ‖booli‖ ∧ head(Atomi) P v <= #exp1 exp2, thenbool′i = (T = ‖T‖)

In the previous, all expressions likeT = ‖T + exp‖ are syntactic, i.e. I calculate

the constant̂t = ‖T + exp‖ using the interpretation‖.‖ for the setV , and then I

1
P means “graphically equal”

CHAPTER 5. Operational Semantics for Verilog 90

construct the stringT = t̂.

I calculateV ′ from V and(E1, . . . , En). For every triple(variable, value′, new′) I

define

(value′, new′) =






(‖exp‖, true), if ∃e r e ∈↑ (
⋃

i E
A
i) ∧

what(e) P variable = exp ∧

value 6= ‖exp‖

(value, false), otherwise

At last, I need to defineE ′
i which consists of the pair ofEA

i

′ andENB
i

′. I will need

to consider several cases when constructingEA
i

′. If ¬‖booli‖, thenEA
i

′ will keep

the old↓ (EA
i), i.e. EA

i

′
=↓ (EA

i). However, if‖booli‖, thenEA
i

′
=↓ (EA

i) ∪ S

whereS will be given below.

– if head(Atomi) P ε, thenS = {(false, ε)}

– if head(Atomi) P assign v = exp(∗), thenS = {(∼ (∗), v = exp(∗))}

– if head(Atomi) P assign # exp1(∗1) v = exp(∗), thenS = {(∼ (∗), tj =

‖T + exp1‖), (T = tj , v = exp(∗))}

– if head(Atomi) P # exp, thenS = {(T = ‖T + exp‖, ε)}

– if head(Atomi) P @ e exp(∗), thenS = {(∼ (∗), ε)}

– if head(Atomi) P v = exp, thenS = {(T = ‖T‖, v = ‖exp‖)}

CHAPTER 5. Operational Semantics for Verilog 91

– if head(Atomi) P v = # exp1 exp, thenS = {(T =‖T +exp1‖,v=‖exp‖)}

– if head(Atomi) P v = @ (exp1(∗)) exp, thenS = {(∼ (∗), v = ‖exp‖)}

– if head(Atomi) P v <= exp, thenS = {(T = ‖T‖, ε)}

– if head(Atomi) P v <= #exp1 exp2, thenS = {(T = ‖T‖, ε)}

At the end I need to defineENB
i . Similarly to the definition ofEA

i

′, I will consider

several cases. If¬‖booli‖, thenEA
i

′
= ENB

i and if‖booli‖, then

EA
i

′
= ENB

i ∪ S, whereS will be defined below.

S =






{(T = ‖T‖, v = ‖exp‖)}, if head(Atomi) P v <= exp,

{(T = ‖T + exp1‖,

v = ‖exp‖)} if head(Atomi) P v <= # exp1 exp

∅, otherwise

Let me give some intuition for the definition ofStep. The cases whenτ1 ∨ τ2 = true

are clear. The first one is a time advancing step and in the second we simply activate all

enabled events from the non-blocking assignment list.

There is more action in the actual computation step whenτ0 ∨ τ3 = true. The in-

tuition behindbooli = true is thatatomi is active and it schedules events for the next

configuration. Therefore, when¬‖booli‖ I simply execute those events which the atom

has scheduled in the past and are enabled at the moment.

However, when‖booli‖ I need to consume the current statement of the atom inhead.

CHAPTER 5. Operational Semantics for Verilog 92

That is why the newAtom gets the tail of the currentAtom and pending onhead I

determine the new booleanbool′i and the new event listsEi
′.

Let me illustrate the intuition when‖booli‖ andhead(Atomi) P assign v = exp(∗).

In this case I have that the current atom is active, i.e. I needto schedule some events. The

actual statement of this atom isassign , i.e. I need to schedule an event which will be

triggered when there is a change in the variables∗ and must update the value ofv upon

that change. Hence I schedule(∼ (∗), v = exp(∗)) into EA
i

′.

Similarly,bool′i gets∼ (∗) because the correspondingassign must be activated when

there is a change in some of the variables∗.

The other event guards arefalsewhich are never triggered and is reserved for the

empty statement,T = ‖T + exp‖ which stands for the time delay andT = ‖T‖ when I

want to schedule an event for the current time.

5.5 Healthiness Conditions

To increase the confidence in the operational semantics I will define and prove some

healthiness conditions on it. Obviously, these healthiness conditions reflect my under-

standing of how a “correct” Verilog simulator should behave.

Let me give some definitions and simple properties about the operational semantics.

Definition 3 A run of a Verilog programP is a sequence of configurations{cj}
∞
j=0 where

c0 is a start configuration derived fromP andcj+1 = Step(cj) for j ≥ 0.

CHAPTER 5. Operational Semantics for Verilog 93

Lemma 1 head andtail are total functions.

Proof (Lemma 1) Both the functions are defined overAtom and have definitions for each

sub-category of the domain. Some of the definitions are terminal like

head(assign body) = assign

and for those I know they are defined. I only need to check the totality of the recursive

definitions. I will considerhead only though the same arguments apply totail as well.

The cases I need to look at are as follow:

head(always statement) = head(statement)

head(initial statement) = head(statement)

head(statement ; Atom) = head(statement)

head(if (bool) statement1 else statement2) =

=






head(statement1), iff ‖bool ‖ = true

head(statement2), otherwise

head(while (bool) statement) =

=






head(statement), iff ‖bool ‖ = true

ε, otherwise

head(begin statement1 ; {statement} end) = head(statement1)

CHAPTER 5. Operational Semantics for Verilog 94

The proof follows an induction by the complexity of the argument ofhead with complex-

ity here means number of characters in that argument, i.e. length of the argument. The

base of this induction are the terminal cases of the definition where I already know that

head is defined. The induction step consists of trivial check thatin all induction cases

shown above, the argument ofhead reduces its length. �

Lemma 2 τ0 ∨ τ1 ∨ τ2 ∨ τ3 ≡ true andτi ∧ τj ≡ false fori 6= j.

This lemma shows that my four step tests are orthogonal, i.e.at most one can be true at

any time, and they capture all possible cases, i.e. at least one is true at any time.

Proof (Lemma 2) Let me have a configuration for which an variable interpretation‖.‖

and allτ tests are defined. I will show first thatτ0 ∨ τ1 ∨ τ2 ∨ τ3 ≡ true.

τ0 ∨ τ1 ∨ τ2 ∨ τ3 ≡ (↑ (
⋃

i,j

Ej
i) = ∅ ∧

∨

i

‖booli‖) ∨

(↑ (
⋃

i,j

Ej
i) = ∅ ∧

∧

i

¬‖booli‖) ∨

(↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) 6= ∅) ∨ (↑ (

⋃

i

EA
i) 6= ∅) ≡

≡ [↑ (
⋃

i,j

Ej
i) = ∅ ∧ (

∨

i

‖booli‖ ∨

∧

i

¬‖booli‖)] ∨

(↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) 6= ∅) ∨ (↑ (

⋃

i

EA
i) 6= ∅) ≡

≡↑ (
⋃

i,j

Ej
i) = ∅ ∨ (↑ (

⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) 6= ∅) ∨ (↑ (

⋃

i

EA
i) 6= ∅)

CHAPTER 5. Operational Semantics for Verilog 95

Now it is vital to notice that↑ (
⋃

i,j Ej
i) = ∅ ≡↑ (

⋃
i E

A
i) = ∅ ∧↑ (

⋃
i E

NB
i) and then

it is easier to extend the transformation as follows.

τ0 ∨ τ1 ∨ τ2 ∨ τ3 ≡ (↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) = ∅) ∨

(↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) 6= ∅) ∨ (↑ (

⋃

i

EA
i) 6= ∅) ≡

≡ (↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) = ∅) ∨

↑ (
⋃

i

ENB
i) 6= ∅ ∨↑ (

⋃

i

EA
i) 6= ∅ ≡

≡ (↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) = ∅) ∨

¬(↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) = ∅) ≡ true

Analogously I can show that allτj are mutually inconsistent. I will work out onlyτ1 ∧ τ2.

All other conjunctions are treated in a very similar fashion.

τ1 ∧ τ2 ≡ (↑ (
⋃

i,j

Ej
i) = ∅ ∧

∧

i

¬‖booli‖) ∧

(↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) 6= ∅) ≡

≡↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) = ∅ ∧

∧

i

¬‖booli‖ ∧

↑ (
⋃

i

EA
i) = ∅ ∧↑ (

⋃

i

ENB
i) 6= ∅ ≡ false

CHAPTER 5. Operational Semantics for Verilog 96

and this completes the proof of lemma 2. �

Lemma 3 The functionStep(.) is total.

The totality ofStep guarantees that a run is always achievable.

Proof (Lemma 3) The proof for the totality ofStep is based on the basic syntax of Ver-

ilog given in tables 4.1, and 4.2. As seen in the definitions ofAtom′
i, bool′i, (variable,

value′, new′), EA
i

′
andENB

i

′
, the new configurationStep(c) is well defined and depends

only on the totality of the functionshead andtail which we have already established.�

Admittedly, there is no established formal semantics of Verilog HDL, i.e. the formal

proof of correctness for a simulator and/or semantics for the language cannot be derived

because I do not have a standard to compare our approach with.My only hope is to show

that the formal model behind the semantics is a true reflection of my intuition for the

behaviour which a Verilog program would generate.

Healthiness Condition 1 If {cj}
∞
j=0 is a run generated by programP , thenTc0 = 0 and

Tcj+1
≥ Tcj

for all j ≥ 0.

The intuition behind this healthiness condition is that time in our operational semantics is

monotonically increasing.

Proof (Healthiness Condition 1) I should note first that any run begins with a start config-

uration whereT = 0. From there after, in all cases of the definition ofStep I either keep

T or increment its value with one. �

CHAPTER 5. Operational Semantics for Verilog 97

Healthiness Condition 2 If c′ = Step(c) for a configurationc, then all enabled active

events fromc are executed during the transition step.

This healthiness condition guarantees the true parallelism of the proposed operational

semantics.

Proof (Healthiness Condition 2) The proof follows the construction ofV ′ andEA
i

′. In the

first two step tests,i.e.τ1 andτ2, I have that all active events are disabled, soV ′ = V and

EA
i

′
= EA

i . In the case ofτ3 though, I have that the formation ofEA
i

′
consists of the union

of all disabled active events fromc, i.e. ↓ (EA
i), and the new scheduled events from the

atoms. In the same time, the new values of the variables inV ′ are calculated according

to the enabled active events. Thus all active enabled eventsfrom c are executed in the

transition fromc to c′. �

Definition 4 If ↑ (
⋃

i,j Ej
i) = ∅ for a configuration, then it is a stable configuration. A

start configuration is not stable.

Healthiness Condition 3 Time advances at a stable configuration only.

This health condition guarantees that unless a stable configuration is reached, the time

does not advance. This property ensures that the stimulus and the response are synchro-

nised.

Before looking at condition 3, I will prove a small lemma.

CHAPTER 5. Operational Semantics for Verilog 98

Lemma 4 Let {cj}
∞
j=0 be an arbitrary run and

c = (T, ((Atom1, bool1), . . . , (Atomn, booln)), V, (E1, . . . , En))

be any ofcj for j > 0. Then for alli, there existse ∈ EA
i wheree = (booli, statement).

Proof (Lemma 4) The proof follows induction forj and the base for the induction isj = 1.

Obviouslyτ0 is true forc0, i.e. for the start configuration,booli is true and↓ (EA
i) = ∅

for all i. Following the definition ofStep I can see whatbool′i andEA
i

′
will be, i.e. I can

check if the claim from the lemma holds forc1 which is the base for the induction.

Let me fix i, i.e. I fix the atom in the configuration. For all possible cases I see that

(bool′i, α) ∈ EA
i

′ for someα which shows that the base for the induction holds forc1.

Let me now assume that the claim holds forcn. I would need to show that it holds for

cn+1. Here I need to consider two cases.

• If ‖booli‖ = true, then I simply see that the cases forbool′i andEA
i

′ correspond and

for each of them I have(bool′i, α) ∈ EA
i

′
for someα.

• I know that the claim from the lemma holds forcn, i.e. if ‖booli‖ = false, then the

corresponding event(booli, α) ∈ EA
i would not be enabled, i.e.(booli, α) ∈↓ (EA

i).

Obviously,↓ (EA
i) ⊆ EA

i

′, i.e.(booli, α) ∈ EA
i

′. On the other hand,‖booli‖ = false

impliesbool′i = booli.

This shows that the claim from the lemma holds forcn+1. �

CHAPTER 5. Operational Semantics for Verilog 99

Lemma 4 implies that, except for the start configuration,↑ (
⋃

i,j Ej
i) = ∅ ⇒

∧
i ¬‖booli‖,

τ1 =↑ (
⋃

i,j Ej
i) = ∅ andτ0 is true in the start configuration only. Now I can prove health-

iness condition 3.

Proof (Healthiness Condition 3) It is clear from the definition ofStep, that timeT ad-

vances only whenτ1 = true. From lemma 4 I derived thatτ1 ⇔↑ (
⋃

i,j Ej
i) = ∅ which by

definition is only true in the stable states. �

I can interpret healthiness condition 3 in the following way. If the system is in a stable

configuration and there is an event going off in its successor, i.e. there is a stimulus from

the environment of the system, then it would freeze the time until a new stable state is

reached. Obviously, a new stable state reached means that the system has produced a

response to the stimulus and thus has stabilised itself. Thefact that the response and that

stimulus occur simultaneously simply says that Verilog is asynchronouslanguage [73,

28, 54].

5.6 Example of a Simulation

As a simple example I will give the sequence of configurations, i.e. a run, for the following

Verilog program.

module test ;

reg a0, a1, b0, b1 ;

wire cout, r0, r1, r2 ;

CHAPTER 5. Operational Semantics for Verilog 100

assign #1 {cout, r0} = a0 + b0 ;

assign #1 {r2, r1} = a1 + b1 + cout ;

initial begin

a0 = 0 ; a1 = 0 ;

b0 = 0 ; b1 = 0 ;

#10 a0 = 1 ; b0 = 1 ;

end

endmodule

The example is purely illustrative and could be viewed as simulation of the program. The

obvious atoms are

• assign1 where

assign1 i s assign #1 {cout, r0} = a0 + b0 ;

• assign2 where

assign2 i s assign #1 {r2, r1} = a1 + b1 + cout ;

• initial where

initial i s initial begin

a0 = 0 ; a1 = 0 ;

b0 = 0 ; b1 = 0 ;

#10 a0 = 1 ; b0 = 1 ;

CHAPTER 5. Operational Semantics for Verilog 101

end

therefore the start configuration will be

c0 = (0, ((assign1 , true), (assign2 , true), (initial , true)), { ⊥ }, (∅2, ∅2, ∅2)).

At this point I evaluate theτ step tests. Obviously onlyτ0 = true, so the next step will be

c1 = (0, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a1 = 0; b0 = 0; b1 = 0; #10 a0 = 1; b0 = 1), T = 0),

{ ⊥ },

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 0, a0 = 0)}, ∅)

)

)

Now I need to evaluate theτ step tests again which gives meτ3 = true on the basis

that the event(T = 0, a0 = 0) from the event list associated with theinitial atom is

enabled. Thus my next configuration would be

c2 = (0, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((b0 = 0; b1 = 0; #10 a0 = 1; b0 = 1), T = 0)),

{(a0, 0, true), ⊥ },

CHAPTER 5. Operational Semantics for Verilog 102

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 0, a1 = 0)}, ∅)

)

)

Again I have the case whenτ3 = true. Hence

c3 = (0, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((b1 = 0; #10 a0 = 1; b0 = 1), T = 0)),

{(a0, 0, false), (a1, 0, true), (t1, 1, true), ⊥ },

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 0, b0 = 0)}, ∅)

)

)

and similarly I can generate the sequence

c4 = (0, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((#10 a0 = 1; b0 = 1), T = 0)),

{(a0, 0, false), (a1, 0, false), (b0, 0, true), (t1, 1, false), (t2, 1, true), ⊥ },

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

CHAPTER 5. Operational Semantics for Verilog 103

({(T = 0, b1 = 0)}, ∅)

)

)

c5 = (0, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, true), (t1, 1, false),

(t2, 1, false), ⊥ },

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 10, ε)}, ∅)

)

)

c6 = (0, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 1, false), ⊥ },

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 10, ε)}, ∅)

)

CHAPTER 5. Operational Semantics for Verilog 104

)

Here I have all the events are not enabled, i.e.τ1 = trueand I take a time advancing step.

c7 = (1, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 1, false), ⊥ },

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 10, ε)}, ∅)

)

)

This leads me to a configuration whereτ3 = true.

c8 = (1, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 1, false), (r0, 0, true), (cout, 0, true), ⊥ },

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(T = 10, ε)}, ∅)

)

CHAPTER 5. Operational Semantics for Verilog 105

)

c9 = (1, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 2, true), (r0, 0, false), (cout, 0, false), ⊥ },

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 10, ε)}, ∅)

)

)

Again I advance the time

c10 = (2, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 2, false), (r0, 0, false), (cout, 0, false), ⊥ },

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(T = 10, ε)}, ∅)

)

)

CHAPTER 5. Operational Semantics for Verilog 106

c11 = (2, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 2, false), (r0, 0, false), (r1, 0, true), (r2, 0, true), (cout, 0, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(T = 10, ε)}, ∅)

)

)

and I have to advance the time again. At this point nothing interesting happens until I get

T = 10, so I skip toc19 where

c19 = (10, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((a0 = 1; b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(T = 10, ε)}, ∅)

)

)

CHAPTER 5. Operational Semantics for Verilog 107

c20 = (10, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

((b0 = 1), T = 10)),

{(a0, 0, false), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(T = 10, a0 = 1)}, ∅)

)

)

c21 = (10, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, T = 10)),

{(a0, 1, true), (a1, 0, false), (b0, 0, false), (b1, 0, false), (t1, 1, false),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(T = 10, b0 = 1)}, ∅)

)

)

c22 = (10, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

CHAPTER 5. Operational Semantics for Verilog 108

{(a0, 1, false), (a1, 0, false), (b0, 1, true), (b1, 0, false), (t1, 11, true),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false)},

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(false, ε)}, ∅)

)

)

c23 = (10, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false)},

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(false, ε)}, ∅)

)

)

c24 = (11, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false)},

CHAPTER 5. Operational Semantics for Verilog 109

(({(∼ (a0, b0), t1 = T + 1), (T = t1, {cout, r0} = a0 + b0)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(false, ε)}, ∅)

)

)

c25 = (11, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 2, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 1, true)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(false, ε)}, ∅)

)

)

c26 = (11, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 12, true), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 1, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

CHAPTER 5. Operational Semantics for Verilog 110

({(false, ε)}, ∅)

)

)

c27 = (12, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 12, false), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 1, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T +1), (T = t2, {r2, r1} = a1+b1+cout)}, ∅) ,

({(false, ε)}, ∅)

)

)

c28 = (12, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 12, false), (r0, 0, false), (r1, 1, true), (r2, 0, false), (cout, 1, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(false, ε)}, ∅)

)

CHAPTER 5. Operational Semantics for Verilog 111

)

c29 = (13, ((assign1 ,∼ (a0, b0)), (assign2 ,∼ (a1, b1, cout)),

(ε, false)),

{(a0, 1, false), (a1, 0, false), (b0, 1, false), (b1, 0, false), (t1, 11, false),

(t2, 12, false), (r0, 0, false), (r1, 1, false), (r2, 0, false), (cout, 1, false)},

(({(∼ (a0, b0), t1 = T + 1)}, ∅) ,

({(∼ (a1, b1, cout), t2 = T + 1)}, ∅) ,

({(false, ε)}, ∅)

)

)

From here after, onlyτ0 is true and the configuration keeps stuttering. I can easily track

the values ofr2, r1 andr0 where the result is stored.

5.7 Summary

An operational semantics for Verilog is presented here. It is fully parallel and it treats the

language with its Behavioural and RTL constructs as defined in tables 4.1 and 4.2.

Several healthiness conditions support the trustworthiness of my semantics. I resort

to them because Verilog lacks an established formal semantics to which I can relate mine.

However, I believe that the healthiness conditions truly reflect my intuition about how a

simulator for Verilog should behave.

CHAPTER 5. Operational Semantics for Verilog 112

At the end I present a small example of a run. This shows the applicability of my work

in a possible real simulator.

Chapter 6

Equivalence of Denotational and

Operational Semantics

The proof of equivalence between the operational and the denotational

semantics of Verilog is presented. This guarantees my ability to calcu-

late properties in an effective way by constructing a machine.

6.1 Introduction

In the previous two chapters 4 and 5 I presented two differentformalisms that define the

semantics of Verilog in denotational and operational termscorrespondingly. However, the

possibility of differences in these formalisms still remains and hence the need for a formal

proof of their equivalence. Here I present the details of theproof which also has the added

benefit of strengthening my belief that the semantics I present is “correct”. Admittedly,

113

CHAPTER 6. Equivalence ... 114

Verilog does not have an established formal semantics and I cannot check if my work

is correct with respect to a “standard” semantics. Therefore, in chapter 5 I gave several

healthiness conditions which I believe should serve as necessary tests for every formalism

that claims to give semantics for Verilog, being a simulatoror otherwise.

In this chapter I go a step further. Since I now have two formalisms I can attempt to

show that they are equivalent in the sense that the behaviourdescribed by the denotational

semantics is precisely the one generated by the operationalsemantics. Definition 6 and

Theorem 4 formalise this notion. Once I have this proof, I canclaim a higher confidence

in the truthfulness and correctness of my work.

6.2 Outline of the Proof

The general idea of the proof is to construct a step for the denotational semantics and, at

the same time, to construct a state and an ITL formula from an operational configuration.

Having the latter I can define when an ITL state and a formula are equivalent to a config-

uration and having the former I can start with equivalent states for the operational and the

denotational semantics and take a step after which I can again compare the states.

For the execution of this plan I will need several lemmas, theorems and a definition.

Lemma 5 allows me to combine the steps of all parallel atoms into a single step for

the whole system. Lemma 6 allows me to find the step of the clockin the denotational

semantics. Theorem 2 constructs a step for the denotationalsemantics, while definition 5

CHAPTER 6. Equivalence ... 115

in conjunction with theorem 3 tells me that the set ofAtoms from a syntactically correct

Verilog program is a bit smaller that the set given by the general definition ofAtom in

table 4.2. The result of Theorem 3 is ultimately used in defining the equivalence between

an ITL formula and state and an operational configuration (definition 6) which trivially

leads to the final result of Theorem 4.

6.3 Detailed Proof

Lemma 5

(fj ⊃ skip) ⊃

∃x r (f1(x) ; F1(x)) ∧ . . . ∧ ∃x r (fn(x) ; Fn(x)) ≡

∃x1, . . . , xn
r {

(f1[x/x1] ∧ . . . ∧ fn[x/xn]);

(F1[x/x1] ∧ . . . ∧ Fn[x/xn])

}

Lemma 6

inf ⊃ ((while b do f1) ; f2)
∗ ≡ (if b then f1 else f2)

∗

CHAPTER 6. Equivalence ... 116

Proof (Lemma 6)

lhs ≡ ((while b do f1) ; f2)
∗

≡ (((b ∧ f1)
∗

∧ fin ¬b) ; f2)
∗

≡ ((b ∧ f1)
∗ ; (¬b ∧ f2))

∗

rhs ≡ (if b then f1 else f2)
∗

≡ ((b ∧ f1) ∨ (¬b ∧ f2))
∗

I will consider several cases. Letf1 ⊃ empty. Then(b ∧ f1)
∗ ≡ empty, therefore

lhs ≡ (¬b ∧ f2)
∗. At the same timerhs ≡ (¬b ∧ f2)

∗ and thereforelhs ≡ rhs.

If f2 ⊃ empty, thenlhs ≡ ((b ∧ f1)
∗ ; (¬b ∧ empty))∗, i.e. 3¬b ⊃ (lhs ⊃ finite)

and inf ∧ lhs ≡ false. Similarly, 3¬b ⊃ (rhs ⊃ finite), i.e. inf ∧ rhs ≡ false,

therefore3¬b ∧ inf ⊃ (lhs ≡ rhs). However,2b ⊃ lhs ≡ (b ∧ f1)
∗

∧ inf ≡ rhs ∧

inf, thus(f2 ⊃ empty) ⊃ inf ⊃ (lhs ≡ rhs).

Now, let me consider the case whenf1 ∧ f2 ∧ more. In this case

b ∧ inf ⊃ ((while b do f1) ; f2)
∗

≡ ((while b do f1) ; f2) ; ((while b do f1) ; f2)
∗

≡ (if b then (f1 ; (while b do f1)) else empty) ; f2) ; ((while b do f1) ; f2)
∗

≡ f1 ; (while b do f1) ; f2 ; ((while b do f1) ; f2)
∗

CHAPTER 6. Equivalence ... 117

≡ f1 ; ((while b do f1) ; f2)
∗

and

b ∧ inf ⊃ (if b then f1 else f2)
∗

≡ (if b then f1 else f2) ; (if b then f1 else f2)
∗

≡ f1 ; (if b then f1 else f2)
∗

and

¬b ∧ inf ⊃ ((while b do f1) ; f2)
∗

≡ ((while b do f1) ; f2) ; ((while b do f1) ; f2)
∗

≡ (if b then (f1 ; (while b do f1)) else empty) ; f2) ; ((while b do f1) ; f2)
∗

≡ f2 ; ((while b do f1) ; f2)
∗

and

¬b ∧ inf ⊃ (if b then f1 else f2)
∗

≡ (if b then f1 else f2) ; (if b then f1 else f2)
∗

≡ f2 ; (if b then f1 else f2)
∗

CHAPTER 6. Equivalence ... 118

This tells me that

lhs ∧ inf ≡ ((b ∧ f1) ∨ (¬b ∧ f2)) ; lhs ∧ inf

and

rhs ∧ inf ≡ ((b ∧ f1) ∨ (¬b ∧ f2)) ; rhs ∧ inf.

Thereforelhs ∧ inf ≡ rhs ∧ inf, i.e.

inf ⊃ lhs ≡ rhs

�

Theorem 2 LetP be a Verilog program.P ’s denotational semantics‖P ‖ has a step.

Proof (Theorem 2) Let me say thatP is a program withn atoms and

P ::= module P (∗);

global variables;

atom1;

atom2;

. . .

atomn;

endmodule

I will assume that the global variables that do not appear on the left-hand side of a non-

CHAPTER 6. Equivalence ... 119

blocking assignment are ranging amongvi while those that appear on the lefthand side

of non-blocking assignments are ranging inxi . Let the following be the initial values of

the variables inP :

• T ime = t̂, for some integer valuêt, i.e. I consider the case when time starts from

t̂.

• For any global variablev I will assume an initial valuêv and associated event

triggernewv. For that its corresponding memory variableV, I will have thatV = v̂

andnewv = newV ,

• For some “non-blocking” variablesxk I will assume that some events have been

scheduled for them. Let me say thattk ≥ t̂ is the time for the non-blocking assign-

ment and̂xk is the scheduled value. Then I will have[tk, x̂k] in the listLXk

atomj
, if a

non-blocking assignment forxk occurs in the code foratomj .

I also know that the denotational semantics forP is as follows.

‖P ‖ ::=

∃Atom1.active, . . . , Atomn.active,

Vi,Xk, Disable, T ime,LXk
atomj

r

{

Vi = v̂i ∧ newVi
= newvi

∧ Xj = x̂j ∧ newXj
= newxj

∧

CHAPTER 6. Equivalence ... 120

LXk

atomj
= [. . . , [tk, x̂k], . . .] ∧ T ime = t̂ ∧

2(Disable = (Atom1.active ∨ . . . ∨ Atomn.active)) ∧

inf ∧ clock(Disable) ∧ ‖atom1‖ ∧ ‖atom2‖ ∧ . . . ∧ ‖atomn‖ ∧

NBx1

atomj
∧ . . . ∧ NBxm

atomk

}

whereVi are the global variables,Xk are the variables appearing on the left-hand side of

a non-blocking assignment andLXk
atomj

are the list variables for non-blocking assignments

for each atom and each non-blocking variable.

‖P ‖ is transformed into a form where I can apply lemma 5, i.e.

‖P ‖ ≡

∃Atom1.active, . . . , Atomn.active,

Vi,Xk, Disable, T ime,LXk
atomj

r

{

Vi = v̂i ∧ newVi
= newv ∧ Xj = x̂j ∧ newXj

= newxj
∧

LXk
atomj

= [. . . , [tk, x̂k], . . .] ∧ T ime = t̂ ∧

2(Disable = (Atom1.active ∨ . . . ∨ Atomn.active)) ∧

inf ∧ Hclock(Disable) ; Tclock(Disable) ∧

∧n

i=1
H‖atomi‖ ; T‖atomi‖ ∧

CHAPTER 6. Equivalence ... 121

∧m,k

i=1,j=1
(HNB

xi
atomj

; NBxi

atomj
) ∧

}

Using the definition of a clock and lemma 6, I can define

Hclock(Disable) ≡

if Disable then skip

else T ime := T ime + 1

Tclock(Disable) ≡ clock(Disable)

and of courseHNB
xi
atomj

will be given as

HNB
xi
atomj

=̂ {

if Disable then skip

else (

Lv
Atom := filter(Lv

Atom, T ime) ∧

∀i < |Lv
Atom|

r if (Lv
Atom[i][0] = T ime) then V := Lv

Atom[i][1]

)

}

CHAPTER 6. Equivalence ... 122

and having in mind thatHNB
xi
atomj

; NBxi

atomj
≡ NBxi

atomj
.

Similarly I can define theH‖atomi‖ andT‖atomi‖. For that I will need to consider some

cases.

Case 1 If atomi is an non-delayed continuous assignment statement, i.e.assign v =

exp(v1, . . . , vn), thenH‖atomi‖ will be

H‖atomi‖ ≡

{(Atom1.active =∼ (V1, . . . ,Vn)) ∧

{if ¬Atom1.active then skip

else V := exp(V1, . . . ,Vn)

}

}

andT‖atomi‖ = ‖atomi‖. This is because‖atomi‖ ≡ {H‖atomi‖}
∗ andH‖atomi‖ ⊃ skip.

Case 2 If atomi is a delayed continuous assignment statement, i.e.assign #exp1 v =

exp(v1, . . . , vn), then I can similarly give definitions forH‖atomi‖ andT‖atomi‖. However,

before doing this I will need to look into the definition of‖atomi‖

‖assign #exp1 v = exp2(∗)‖ =̂

CHAPTER 6. Equivalence ... 123

∃t, Atom.act1, Atom.act2 r

{2(Atom.active = Atom.act1 ∨ Atom.act2) ∧

{if ∼ (∗) then (Atom.act1 = true ∧ t := T ime + exp1)

else (Atom.act1 = false ∧

if (t 6= T ime) then t := t

else t := t − 1

) ∧

if t = T ime then (Atom.act2 = true ∧ V := exp2(∗))

else (Atom.act2 = false ∧ skip)

}∗

}

Without loss of generality I can rename the local variablest, Atom.act1, Atom.act2 and

pull them in front of the whole formula‖P ‖, i.e. I can make them global, hence I can

apply lemma 5. Therefore, I can safely assume that

H‖atomi‖ =̂

{(Atom.active = Atom.act1 ∨ Atom.act2) ∧

CHAPTER 6. Equivalence ... 124

{if ∼ (∗) then (Atom.act1 = true ∧ t := T ime + exp1)

else (Atom.act1 = false ∧

if (t 6= T ime) then t := t

else t := t − 1

) ∧

if t = T ime then (Atom.act2 = true ∧ V := exp2(∗))

else (Atom.act2 = false ∧ skip)

}

}

and henceT‖atomi‖ = ‖atomi‖ again because‖atomi‖ ≡ {H‖atomi‖}
∗ andH‖atomi‖ ⊃

skip.

Case 3 If atomi is an always statement, i.e.always statement, then‖atomi‖ ≡

‖statement‖ ; ‖atomi‖ ≡ H‖statement‖ ; T‖statement‖ ; ‖atomi‖, i.e.

H‖always statement‖ =̂ H‖statement‖ and

T‖always statement‖ =̂ T‖statement‖ ; ‖atomi‖.

Thus, I have to investigate the semantics of a statement which I will do later.

CHAPTER 6. Equivalence ... 125

Case 4 If atomi is an initial statement, i.e.initial statement, then ‖atomi‖ ≡

‖statement‖ ; 2(Atom.active = false) ≡ H‖statement‖ ; T‖statement‖ ; 2(Atom.active =

false), i.e.

H‖initial statement‖ =̂ H‖statement‖ and

T‖initial statement‖ =̂ T‖statement‖ ; 2(Atom.active = false)

and I have to look again at the semantics of statement.

Case 5 Now I will have to show that I can transform‖statement‖ ≡ H‖statement‖ ;

T‖statement‖.

Case 5.1 If statement isε, then‖statement‖ ≡ Atom.active = false ∧ skip, i.e.

H‖statement‖ ≡ (Atom.active = false∧ skip) andT‖statement‖ ≡ empty.

Case 5.2 If statement is event control, i.e.statement = @ (e1or , . . . , or en), then

‖@ (e1or , . . . , or en)‖ ≡

while ¬ ∼ (E1, . . . , En) do (‖ε‖);

(Atom.active = true ∧ skip)

CHAPTER 6. Equivalence ... 126

Obviously, if ¬ ∼ (E1, . . . , En), thenH‖statement‖ ≡ H‖ε‖ and T‖statement‖ ≡ T‖ε‖ ;

‖statement‖. However, if∼ (E1, . . . , En), thenH‖statement‖ ≡ (Atom.active = true ∧

skip) andT‖statement‖ = empty.

Case 5.3 Let me now consider the case of time delay whenstatement = # exp, i.e.

‖statement‖ ≡

∃t r {t = T ime + exp ∧

(while T ime < t do (‖ε‖) ; (Atom.active = true ∧ skip))

} ≡

∃t r {t = T ime + exp ∧ (H‖statement‖ ; T‖statement‖)}

In this case

H‖statement‖ ≡






‖ε‖, if T ime < t

Atom.active = true ∧ skip, otherwise

and

T‖statement‖ ≡






while T ime < t do (‖ε‖);

(Atom.active = true ∧ skip)), if T ime < t

empty, otherwise

CHAPTER 6. Equivalence ... 127

Case 5.4 The rest of the statements have trivial definitions forH andT .

Having definedH, I can see thatH ⊃ skip, i.e. I can rewrite‖P ‖ using lemma 5

into the following form.

‖P ‖ ≡

∃Atom1.active, . . . , Atomn.active,

Vi,Xk, Disable, T ime,LXk

atomj

r {

Vi = v̂i ∧ newVi
= newv ∧ Xj = x̂j ∧ newXj

= newxj
∧

LXk

atomj
= [. . . , [tk, x̂k], . . .] ∧ T ime = t̂ ∧

2(Disable = (Atom1.active ∨ . . . ∨ Atomn.active)) ∧

inf ∧

{

[Hclock(Disable) ∧

∧n

i=1
(H‖atomi‖ ∧ HNB

xi
atomj

)];

[Tclock(Disable) ∧

∧m,k

i=1,j=1
(T‖atomi‖ ∧ NBxi

atomj
)]

}

}

and I know that

Hclock(Disable) ∧

∧n

i=1
(H‖atomi‖ ∧ HNB

xi
atomj

) ⊃ skip

CHAPTER 6. Equivalence ... 128

and this will be the step of‖P ‖. Now I will have to show that the state after the step taken

by both the Operational and the Denotational semantics ofP are the same. �

Definition 5 V Atom is defined as follows.

vAtom ::= statement | always | statement ; vAtom

V Atom ::= initial | assign | vAtom

Table 6.1: Syntax of VAtom

Obviously,V Atom ⊂ Atom and this is becausealways ⊂ Atom, sovAtom ⊂ Atom.

Analogously,initial andassign are both subsets ofAtom. It is also obvious that

V Atom is what I can expect to see in a configuration which is part of a run of a Verilog

program. This result is a part of the following theorem.

Theorem 3 If c = (T, ((Atomi, booli)), V, (Ej)) is a non-start configuration taken from

a run of a syntactically correct Verilog program, thenAtomi is a V Atom and there are

several possible cases forEj .

1. EA
j = {(∼ (v1, . . . , vn), v = exp(v1, . . . , vn))} andENB

j = ∅ for somev, vj

2. EA
j = {(∼ (v1, . . . , vn), tj = t̂)} andENB

j = ∅ for somevj , tj, t̂

3. EA
j = {(∼ (v1, . . . , vn), tj = t̂), (T = tj , v = exp(v1, . . . , vn))} andENB

j = ∅ for

somev, vj, tj , t̂

CHAPTER 6. Equivalence ... 129

4. EA
j = {(when, what)} andENB

j = {(when1, what1), . . . , (whenk, whatk)}where

(when, what) =






(false, ε)

(true, ε)

(true, v = v̂)

(T = t̂, ε)

(T = t̂, v = v̂)

(∼ (v1, . . . , vn), ε)

(∼ (v1, . . . , vn), v = v̂)

and

(wheni, whati) =






(T = t̂, v = v̂)

(∼ (v1, . . . , vn), v = v̂)

and t̂, v̂ are constants.

5. EA
j = S1 ∪ S2 where

S1 ⊂ {(when, what)}

and

S2 ⊂ {(when1, what1), . . . , (whenk, whatk)}

Proof (Theorem 3) The proof is an induction on a run, i.e. I check that the theorem holds

for c1 after I apply the step on a start configuration. Then, I will see that if it holds for

CHAPTER 6. Equivalence ... 130

c, it will hold for Step(c) also. This is because I always include an event intoEA
j set

whenboolj is true, i.e. I schedule new events if I have that one of the events are enabled,

therefore I delete one and add the next.

Case 1 occurs when theAtomj is non-delayed continuous assignment, i.e.assign v =

exp(v1, . . . , vn).

Case 2 occurs when theAtomj is delayed continuous assignment, i.e.assign v =

#exp1 exp(v1, . . . , vn), t̂ is a constant andtj ≥ ‖T‖.

Case 3 occurs when theAtomj is delayed continuous assignment, i.e.assign v =

#exp1 exp(v1, . . . , vn), t̂ is a constant andtj < ‖T‖.

Case 4 occurs when theAtomj is a behavioural atom and the cases that follow are

(when, what) =






(false, ε) , if head ofAtomj is ε

(true, ε) , if head ofAtomj is v <= exp

(true, ε) , if head ofAtomj is v <= #exp1 exp2

(true, v = v̂) , if head ofAtomj is v = exp

(T = t̂, ε) , if head ofAtomj is #exp

(T = t̂, v = v̂) , if head ofAtomj is v = #exp1 exp2

(∼ (v1, . . . , vn), ε) , if head ofAtomj is @(v1, . . . , vn)

(∼ (v1, ., vn), v = v̂) , if head ofAtomj is v = @(v1, . . . , vn) exp

CHAPTER 6. Equivalence ... 131

and

(wheni, whati) =






(true, v = v̂) , if head ofAtomj is v <= exp

(T = t̂, v = v̂) , if head ofAtomj is v <= #exp1 exp2

Case 5 occurs at non-blocking assign event activation, i.e.whenτ2 is true. This is the

only case when there might be more that 2 events inEA
j . However, right on the next step

they all will be executed, because if I look at the definition of Step whenτ2, I will see

that I add only those non-blocking assign events which the function↑ selects, i.e. they are

activated according to the interpretation‖.‖. I only have to note now that the variable set

V and the timeT are left unchanged in aτ2 step, i.e. the interpretation will validate the

same events as active and will execute them at the very next step. �

The denotational semantics ofV Atom is easily derived. I only have to define

‖statement ; vAtom‖ =̂ ‖statement‖ ; ‖vAtom‖. Now I can define properly what I

mean by deriving denotational semantics out of the operational configuration.

6.3.1 From a configuration to an ITL state

How can I construct a state out of a configuration? Let me have aconfiguration

c = (T, ((Atom1, bool1), . . . , (Atomn, booln)), V, ((EA
1 , ENB

1), . . . , (EA
n , ENB

n))).

from c I can construct an ITL state by

CHAPTER 6. Equivalence ... 132

• T ime = T

• The values of allGlobal Variables can be taken from their counterparts in the vari-

able setV . Let (x, value, newx) ∈ V . Then the corresponding global variable must

beX = value. However, I know that for the ITL state I actually have two variables,

namelyX = value andnewX = newx.

• If the event(t, v = value) ∈ ENB
i , then I will put [t, value] in the listLv

Atomi
.

6.3.2 Constructing an ITL formula

Now I have to determine the corresponding ITL formula. I knowthe general form of‖P ‖,

I only have to see whatH‖atomi‖ andT‖atomi‖ are for each atom. It is quite trivial to note

thatT‖atomi‖ = ‖Atomi‖. However, forH‖atomi‖ I will need to consider some cases on

the event lists(Ej) for eachAtomj . Here I will apply the result of theorem 3.

1. If EA
j = {(∼ (v1, . . . , vn), v = exp(v1, . . . , vn))} andENB

j = ∅ for somev, vj,

then I am having a non-delayed continuous assignment atom and I know what the

H of such an atom is.

2. If EA
j = {(∼ (v1, . . . , vn), tj = ‖T + exp1‖)} andENB

j = ∅ for somevj, tj , then I

have a delayed continuous assignment with the local variable t < T ime, for which

I know the definition.

3. If EA
j = {(∼ (v1, . . . , vn), tj = ‖T + exp1‖), (T = tj , v = exp(v1, . . . , vn))} and

CHAPTER 6. Equivalence ... 133

ENB
j = ∅ for somev, vj, tj, this is again a delayed continuous assignment with

t ≥ T for which I know the definitions ofH andT .

4. If EA
j = {(when, what)} andENB

j = {(when1, what1), . . . , (whenk, whatk)},

then I have a behavioural atom, i.e. an initial or an always atom. For those, I need

to look into the definition ofstatement andvAtom.

• If (when, what) = (false, ε), i.e. I have anε as a statement. In this case I

know what the definitions are.

• If (when, what) = (true, ε), i.e. I have a non-blocking assignment (delayed

or not) and this is treated just below.

• (when, what) = (true, v = v̂), then I have a simple blocking assignment, i.e.

H‖v =exp‖ =̂ {(Atom.active = true) ∧ V := exp}.

• If (when, what) = (T = t̂, ε), then I have just time delay and in this case

H‖# exp‖ =̂ ∃t r {t = T ime + exp ∧ while T ime < t do (‖ε‖)}

• If (when, what) = (T = t̂, v = v̂), then I have a delayed blocking assignment

H‖v =#exp1 exp‖ =̂ ∃x r {x = exp ∧ (‖η‖ ; ((Atom.active = true) ∧ V :=

x))}

• If (when, what) = (∼ (v1, . . . , vn), ε), thenH‖@ (e1or ,...,or en)‖ =̂ while ¬ ∼

(E1, . . . , En) do (‖ε‖)

• If (when, what) = (∼ (v1, . . . , vn), v = v̂), then I have event control de-

CHAPTER 6. Equivalence ... 134

layed blocking assignment which hasH‖v =η exp‖ =̂ ∃x r {x = exp ∧ (‖η‖ ;

((Atom.active = true) ∧ V := x))}. In this caseη is strictly@(v1, . . . , vn).

I have to consider only the case of the non-blocking assignment. If there is

(whenj , whatj) ∈ ENB
j and

• (whenj, whatj) = (T = t̂, v = v̂) and the constant̂t > ‖T‖, then I have time

delayed non-blocking assignment andH‖v <=# exp1 exp2‖ =̂

{(Atom.active = true) ∧ Lv
Atom := Lv

Atom + [[T ime + exp1, exp2]]}, where

exp1 = ‖T‖ − t̂.

• (whenj, whatj) = (true, v = v̂), then I have a non-delayed non-blocking

assignment andH‖v <=exp‖ =̂ {(Atom.active = true) ∧ Lv
Atom := Lv

Atom +

[[T ime, exp]]},

6.3.3 The final result

Definition 6 I will say that an ITL state and an ITL formula are equivalent to a config-

uration if the state can be derived from the configuration using the procedure given in

section 6.3.1 and the formula can be derived from the configuration using the procedure

given in section 6.3.2.

Now I can formulate and prove the following theorem.

Theorem 4 If the initial states are equivalent, then both semantics take equivalent steps.

CHAPTER 6. Equivalence ... 135

Proof (Theorem 4) It should be obvious that for any programP , the first configurationc1

of a run and‖P ‖ are equivalent (correspondent) according to the definition6 given above.

Next, I take a configuration, from which I construct an ITL state plus a formula corre-

sponding to the configuration (the procedures are given in sections 6.3.1 and 6.3.2). Then

I take independent steps for the operational semantics and the denotational semantics and

I check that the definition for corresponding configuration state and formula after the step

holds as well. Therefore I conclude that the operational anddenotational semantics are

equivalent. �

6.4 Summary

This is the most technical part of the thesis. The proof of theequivalence between my

denotational and operational formalisms for Verilog allows me to claim a higher level of

confidence in my results. I can now reason both operationallyand denotationally about

a Verilog program, therefore I can reason both about properties and machines that imple-

ment them.

Chapter 7

A Case Study — Smart Card

Application

A partial refinement of a mixed hardware/software application, together

with all supporting proofs, is shown in this chapter. All major steps

through the development are given. This application is a “proof-of-

concept” only. However, I believe the technique is practical.

7.1 Introduction

A smart card application is required to perform Rivest Shamir Adleman (RSA) [92] en-

cryption and decryption witha private keyon the smart card’s chip itself [75]. The ap-

plication should consist of a smart card and a reader. Both the reader and the smart card

should comply with International Standardisation Organisation (ISO) 7816 set of stan-

136

CHAPTER 7. A Case Study — Smart Card Application 137

dards [91] for size and pin configuration.

(a) (b)

Figure 7.1: ISO 7816 Standards

7.1.1 Electrical Signals Description

The following are the pin assignments as defined by [91]. See figure (7.1(b)) for reference.

1. Vcc — Power supply input. This contact is used to supply the powervoltage by the

reader.

2. RST — Reset signal supplied from the reader.

3. CLK — Clocking or timing signal supplied from the reader.

4. RFU — Reserved for Further Use.

5. GND — Ground reference voltage supplied from the reader.

CHAPTER 7. A Case Study — Smart Card Application 138

6. Vpp — Programming voltage input. This contact is to supply the voltage required

to program or to erase the internal non-volatile memory and it is supplied from the

reader.

7. I/O — Input or Output for serial data to the integrated circuit inside the card. This

contact is used as input (reception mode) or output (transmission mode) for data

exchange.

8. RFU — Reserved for Further Use.

7.1.2 Operating Procedure for Integrated Circuit(s) Cards

This operating procedure applies to every smart card with contacts.

The dialogue between the reader and the the card shall be conducted through the

consecutive operations:

- connection and activation of the contacts by the reader, i.e. power-up.

- reset of the card, i.e.reset command.

- answer to reset by the card.

- subsequent information exchange between the card and the reader.

- deactivation of the contacts by the reader.

For a detailed description of each of these operations referto [91].

CHAPTER 7. A Case Study — Smart Card Application 139

7.2 Requirements for a Reader

The reader should supply the smart card with appropriate power and frequency sources

and be an interface device between the smart card and a host computer. The host and the

reader should be linked with a serial cable with RS 232 protocol.

Smart card reader

RS 232

Host

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

Figure 7.2: A Reader and a Host

7.3 Requirements for a Smart Card

The smart card should perform the following, all-in-all, onits chip. It should, in no

circumstances, disclose the private key stored inside.

1. After the initialreset , it must respond with results from its self-test procedure as

an answer to reply.

2. Authenticate the reader via PIN, password or biometric identification. For the whole

lifetime of the card, there must be at least one successful authentication within every

period that covers three unsuccessful ones. This means thatthe life of the card must

CHAPTER 7. A Case Study — Smart Card Application 140

end and the data in the card destroyed, if there are no successful authentications

within a period of three unsuccessful ones.

3. Implement the following commands issued by the reader.

- make keys : Generate a pair of public and private keys and store them in

its Electrically Erasable Programmable Read Only Memory (EEPROM) for

further use.

- give public : Give the public key to the reader.

- encrypt anddecrypt : Encrypt/Decrypt a data block given by the reader

using the private key. Data block is a sequence of bytes with fixed length.

When the card receives anencrypt or decrypt command it must respond

with the encrypted/decrypted result.

I will adopt the convention thatreset is a privileged command andmake keys ,

give public , encrypt anddecrypt areunprivileged commands.

The reader can asynchronously reset the card at any time. This should not damage

any data stored in the card or the card itself. Here we will specify that a reset signal on

the RST pin of the card, see pin 2-RST in figure (7.1(b)), is equivalent to a privileged

reset command. Once reset, the card must wait for user authentication before any other

command.

CHAPTER 7. A Case Study — Smart Card Application 141

Only after a successful authentication the card is requiredto respond to the reader’s

unprivileged commands, i.e.make keys , give public , encrypt anddecrypt in

any order. Thegive public , encrypt anddecrypt commands can be issued by the

reader only if there is a pair of public and private keys stored in the card. A unprivileged

command cannot interrupt the card, if the later is responding to a command.

7.4 Top Level Specification

I will start with the assumption that the card and the reader are a single system. This,

at a later stage, will allow me to formally specify each individual component in terms of

its environment, i.e. in terms of its counterpart. Going back to page 27, I can see that it

represents Step 0 from Figure 3.1 on that page. In the following I use the formalisations:

• activate activates the contacts, i.e. the card is in the reader.

• reset resets the card successfully.

• not reset stays for unsuccessful reset.

• authenticate represents successful authentication.

• not authent represents unsuccessful authentication.

• commandexecutes unprivileged command given to the card by the reader.

• deactivate deactivates the contacts, i.e. card not in the reader.

CHAPTER 7. A Case Study — Smart Card Application 142

I will also accept, that these actions are mutually exclusive to one another, i.e.

(7.1) Req(7.1) ≡ any1 ∧ any2 ≡ false

for any twodifferentactions of the possible given just above. This assumption would

be quite natural when one considers that the card and the reader could perform only one

action at a time.

The top level specification must satisfy several properties. In the following I will

assumeF, F1, F2 andF3 to be all finite formulas, i.e.F ⊃ finite andFj ⊃ finite for

j = 1, 2, 3.

1. A successfulreset must always be preceded byactivate , i.e. one can only

reset the card if it has been activated.

(7.2)

Req(7.2) =̂ 2(

F ; reset ⊃

(F ⊃ 3(activate ; ¬3a deactivate))

)

2. Everyauthenticate must be preceded by areset , i.e. one can authenticate

the card only if the last attempt to reset it has been successful and it has not been

CHAPTER 7. A Case Study — Smart Card Application 143

deactivated since then.

(7.3)

Req(7.3) =̂ 2(

F ; authenticate ⊃

(F ⊃ 3(reset ; ¬3a (not reset ∨ deactivate)))

)

3. All unprivileged commands must always be preceded by a successful authentica-

tion.

(7.4)

Req(7.4) =̂ 2(

((F ; command) ∧ ¬(F ⊃ 3command)) ⊃

(F ⊃ 3authenticate)

)

4. every period that covers three unsuccessful authentications and not a successful one

CHAPTER 7. A Case Study — Smart Card Application 144

must be followed by a period where no unprivileged command isexecuted.

(7.5)

Req(7.5) =̂ 2(

((not authent ; F1 ; not authent ; F2;

not authent ; F3) ∧

¬(F1 ⊃ 3a authenticate) ∧ ¬(F2 ⊃ 3a authenticate)

) ⊃ (F3 ⊃ (¬3command))

)

The automaton in figure (7.3) represents the possible transitions of a system composed

of a reader and a smart card working together. The automaton has a start state but it lacks

a final state. Instead it has a “sink” (q10) interpreted as a “dead” end. Notably, each label

is a name of a procedure.

I can specify the behaviour displayed by the automaton in figure 7.3 by a set of com-

positional properties that encode the automaton. The top-level formulaΦ given by (7.6)

can be composed into groups of the sub-formulas, thus

(7.6) Φ =̂ 2

∧10

i=0
φi

I shall recall that a state is a boolean expression, thus it isa state formula in ITL. At this

moment I will only specify that all statesqj are different, i.e. mutually exclusive. Later I

CHAPTER 7. A Case Study — Smart Card Application 145

q
0

q
1

q
2

q
3

activate

deactivate

not_reset

deactivate

command

q
4

reset
reset

q
5

q
6

not_authent

reset

not_reset

not_reset

not_reset
deactivate
activate

deactivate

q
7authenticate

not_authent

q
10

not_authent
reset

q
9

q
8

activate

deactivate

not_reset

deactivate

not_reset

reset

deactivate

authenticate

reset

authenticate reset

not_reset

not_authent

authenticate

Figure 7.3: Smart Card as a Finite State Automaton

will give precise definitions for each state.

(7.7) φ0 =̂ q0 ⊃ activate ∧ fin q1

φ1 =̂ fq1a
∨ fq1b

∨ fq1c

fq1a
=̂ q1 ⊃ not reset ∧ fin q1(7.8a)

fq1b
=̂ q1 ⊃ deactivate ∧ fin q0(7.8b)

fq1c
=̂ q1 ⊃ reset ∧ fin q2(7.8c)

CHAPTER 7. A Case Study — Smart Card Application 146

φ2 =̂ fq2a
∨ fq2b

∨ fq2c
∨ fq2d

∨ fq2e

fq2a
=̂ q2 ⊃ reset ∧ fin q2(7.9a)

fq2b
=̂ q2 ⊃ not reset ∧ fin q1(7.9b)

fq2c
=̂ q2 ⊃ deactivate ∧ fin q0(7.9c)

fq2d
=̂ q2 ⊃ authenticate ∧ fin q3(7.9d)

fq2e
=̂ q2 ⊃ not authent ∧ fin q4(7.9e)

φ3 =̂ fq3a
∨ fq3b

∨ fq3c
∨ fq3d

∨ fq3e
∨ fq3f

fq3a
=̂ q3 ⊃ deactivate ∧ fin q0(7.10a)

fq3b
=̂ q3 ⊃ not reset ∧ fin q1(7.10b)

fq3c
=̂ q3 ⊃ reset ∧ fin q2(7.10c)

fq3d
=̂ q3 ⊃ command ∧ fin q3(7.10d)

fq3e
=̂ q3 ⊃ authenticate ∧ fin q3(7.10e)

fq3f
=̂ q3 ⊃ not authent ∧ fin q4(7.10f)

CHAPTER 7. A Case Study — Smart Card Application 147

φ4 =̂ fq4a
∨ fq4b

∨ fq4c
∨ fq4d

∨ fq4e

fq4a
=̂ q4 ⊃ authenticate ∧ fin q3(7.11a)

fq4b
=̂ q4 ⊃ reset ∧ fin q4(7.11b)

fq4c
=̂ q4 ⊃ not reset ∧ fin q5(7.11c)

fq4d
=̂ q4 ⊃ deactivate ∧ fin q6(7.11d)

fq4e
=̂ q4 ⊃ not authent ∧ fin q7(7.11e)

φ5 =̂ fq5a
∨ fq5b

∨ fq5c

fq5a
=̂ q5 ⊃ reset ∧ fin q4(7.12a)

fq5b
=̂ q5 ⊃ not reset ∧ fin q5(7.12b)

fq5c
=̂ q5 ⊃ deactivate ∧ fin q6(7.12c)

(7.13) φ6 =̂ q6 ⊃ activate ∧ fin q5

CHAPTER 7. A Case Study — Smart Card Application 148

φ7 =̂ fq7a
∨ fq7b

∨ fq7c
∨ fq7d

∨ fq7e

fq7a
=̂ q7 ⊃ authenticate ∧ fin q3(7.14a)

fq7b
=̂ q7 ⊃ reset ∧ fin q7(7.14b)

fq7c
=̂ q7 ⊃ not reset ∧ fin q8(7.14c)

fq7d
=̂ q7 ⊃ deactivate ∧ fin q9(7.14d)

fq7e
=̂ q7 ⊃ not authent ∧ fin q10(7.14e)

φ8 =̂ fq8a
∨ fq8b

∨ fq8c

fq8a
=̂ q8 ⊃ reset ∧ fin q7(7.15a)

fq8b
=̂ q8 ⊃ not reset ∧ fin q8(7.15b)

fq8c
=̂ q8 ⊃ deactivate ∧ fin q9(7.15c)

(7.16) φ9 =̂ q9 ⊃ activate ∧ fin q8

(7.17) φ10 =̂ q10 ⊃ empty ∧ fin q10

CHAPTER 7. A Case Study — Smart Card Application 149

I can easily show that, in conjunction to the natural condition

q0 ∧ any∗,

which says that “I start fromq0 and I only use the commands fromany ”, the formulas

representing the automaton imply the top-level requirementsReq(7.2), Req(7.3), Req(7.4) and

Req(7.5) via sequential composition, i.e. the following theorem holds.

Theorem 5 The formula defined by(7.6) is a refinement for the conjunction of the for-

mulas defined by(7.2), (7.3), (7.4)and (7.5). In other words,

Req(7.2) ∧ Req(7.3) ∧ Req(7.4) ∧ Req(7.5) v q0 ∧ any∗ ∧ Φ

Proof (Theorem 5) I will show that the following two refinements hold.

Req(7.2) v q0 ∧ any∗ ∧ Φ

Req(7.5) v q0 ∧ any∗ ∧ Φ

The rest can be proven with similar techniques so I will not give the full proof here.

Lemma 7

q0 ∧ any∗ ∧ Φ ⊃ Req(7.2)

CHAPTER 7. A Case Study — Smart Card Application 150

Proof (Lemma 7) I will recall that, following

` P ⇒ ` 2P,

in ITL I can infer that

` 2P ⊃ Q ⇒ ` 2(2P ⊃ Q) ⇒

⇒ ` 22P ⊃ 2Q ⇒ ` 2P ⊃ 2Q

and having in mind that bothΦ andReq(7.2) have the form2P , it will be sufficient for the

lemma to show

(7.18) q0 ∧ any∗ ∧ 2

∧10

i=0
φi ∧ F ; reset ⊃

F ⊃ 3(activate ; ¬3a deactivate),

whereF ⊃ finite. I will first show that

(7.19) any∗ ∧ 2

∧10

i=0
φi ⊃ 2a ((deactivate ; any) ⊃ (any ≡ activate)).

I will recall (7.8b), (7.9c), (7.10a), (7.11d), (7.12c), (7.14d), (7.15c) which give me

(7.20) any∗ ∧ 2

∧10

i=0
φi ⊃ 2a (deactivate ⊃ (fin q0 ∨ fin q6 ∨ fin q9)).

CHAPTER 7. A Case Study — Smart Card Application 151

Now I will combine (7.20) with (7.7), (7.13) and (7.16) by using the compositional proof

rule (3.3) in section 3.5 and this will give me (7.19). It should be obvious by now that I

can prove (7.18) by contradiction. Let me assume that for someF1, F2 andF3

q0 ∧ any∗ ∧ 2

∧10

i=0
φi ∧ F ; reset ∧ (F ≡ F1 ; activate ; F2 ; deactivate ; F3)

Havingany∗ in mind I can guarantee that as withF1 andF2, F3 ⊃ any∗. Of course,

F3 ⊃ morebecause otherwise I would have haddeactivate ; reset which contradicts

with (7.19) and alsoF3 ⊃ finite. Again (7.19) gives me thatF3 ⊃ activate ; F ′

and forF ′ I can apply the same reasoning. However, the length ofF ′ is smaller than the

length ofF3, i.e. I can conclude (7.18) and this proves lemma 7. �

Lemma 8

q0 ∧ any∗ ∧ Φ ⊃ Req(7.5)

Proof (Lemma 8) Following the same argument as with lemma 7 I can saythat it will be

sufficient for the lemma to show

(7.21)

q0 ∧ any∗ ∧ 2

∧10

i=0
φi ∧ (not authent ; F1 ; not authent ; F2 ; not authent ; F3) ∧

¬(F1 ⊃ 3a authenticate) ∧ ¬(F2 ⊃ 3a authenticate)

⊃ (F3 ⊃ (¬3command))

CHAPTER 7. A Case Study — Smart Card Application 152

At this point I only need to note that after threenot authent commands, I must end-up

in q10 and one look at (7.17) on page 148 is sufficient for the lemma. �

This proves the theorem. �

7.5 “Smart Card — Reader” Split

I have shown the correct behaviour of the system as a whole andI now need to consider

the components involved, namely the smart card and the reader, with the communication

between them. For that purpose I will need to define the interface between them. I will

refer here to Figure 3.1 on page 27 where I will see that this forms Step 1.

An inspection of figure 7.1 on page 137 gives me a good idea of what the interface

should look like. I have 8 pins between the card and the readerand 6 of them are used.

Therefore I will use these pins as shared variables between the two components of my

system.

The description of the standard [91] tells me that all variablesVcc, RST, CLK, Gnd, Vpp

andI/O are boolean and even gives me the actual electrical characteristics, which can

also be added as requirements at this point. However I will not go in that details and will

simply use the notationVcc for high and¬Vcc for low level on theVcc pin.

However, for thedifferentstatesq0, q6 and q9 to be distinguishable, the smart card

should always know how many unsuccessful authentications there have been since the

time of the last successful one. This leads me to introduce anadditional state variableBLK

CHAPTER 7. A Case Study — Smart Card Application 153

which will keep the number of these unsuccessful authentications and the definition of it

shall beq0(BLK) = 0, q6(BLK) = 1 andq9(BLK) = 2.

I am now ready to formalise the different procedures involved in the operation of the

smart card.

• activate is described in the standard [91] as follows:

– RST is in low state; Here I will change this to high and will bring theRST to

low at the beginning of thereset procedure.

– Vcc shall be powered and shall stay powered tilldeactivate ;

– I/O in the interface device shall be put in reception mode, i.e. high state;

– Vpp shall be raised to low state;

– CLK shall be provided with a suitable and stable clock untildeactivate .

I will need to keep the definitions regarding theVcc andCLK true over every interval

bounded byactivate anddeactivate. Therefore, to reduce the specification, we

will assume

2(activate ; F ; deactivate ⊃ (F ⊃ 2m Vcc ∧ clock(CLK))(7.22)

CHAPTER 7. A Case Study — Smart Card Application 154

where the definition ofclock is as follows

clock(CLK) =̂ (CLK gets¬CLK)

and now I can define the processactivate in ITL as the following interval and

finite formula.

activate =̂ finite ∧ 2m (RST) ∧ 3(2m I/O) ∧ 2m (¬Vpp) ∧ stable (BLK)

where I can splitactivate into two subpartsactivater andactivatec for the

reader and the card correspondingly.

activater =̂ finite ∧ 2m (RST) ∧ 3(2m I/O) ∧ 2m (¬Vpp)

activatec =̂ stable (BLK)

and where I can compositionally show

q0 ⊃ activate ∧ fin q1 v q0 ⊃ activater ∧ activatec ∧ fin q1

CHAPTER 7. A Case Study — Smart Card Application 155

which is further refined by the conjunction of

q0 ∧ Assr ∧ activatei
r ⊃ activater ∧ fin q1

and

q0 ∧ Assc ∧ activatei
c ⊃ activatec ∧ fin q1

whereAssr =̂ activatec is an assumption for the reader andAssc =̂ activater

is an assumption for the card and in the mean timeactivatei
r is an implementation

for the reader andactivatei
c implements the smart card. As it may be now notice-

able that the card and the reader assume the requirements fortheir counterparts for

their correct work. It may be obvious now that the implementation of the reader

activatei
r is best suited for software and the implementation for the smart card

activatei
c must be hardware.

• Again following the standard,deactivate is given as

– State low onRST;

– State low onCLK;

– Vpp low;

– State low onI/O;

CHAPTER 7. A Case Study — Smart Card Application 156

– Vcc low;

which can easily be defined as the possibly infinite formula

deactivate =̂ 2m (¬RST ∧ ¬CLK ∧ ¬Vpp ∧ ¬I/O ∧ ¬Vcc) ∧ stable (BLK)

As with activate I can split and formulate the components compositionally into

deactivater =̂ 2m (¬RST ∧ ¬CLK ∧ ¬Vpp ∧ ¬I/O ∧ ¬Vcc)

deactivatec =̂ stable (BLK)

and I can again compositionally show

q1 ⊃ deactivate ∧ fin q0 v q1 ⊃ deactivater ∧ deactivatec ∧ fin q0

which is further refined by the conjunction of

q1 ∧ Assr ∧ deactivatei
r ⊃ deactivater ∧ fin q0

and

q1 ∧ Assc ∧ deactivatei
c ⊃ deactivatec ∧ fin q0

CHAPTER 7. A Case Study — Smart Card Application 157

whereAssr =̂ deactivatec andAssc =̂ deactivater are assumptions for the

reader and the card correspondingly and in the mean timedeactivatei
r is an im-

plementation for the reader anddeactivatei
c implements the smart card with the

implementation of the readerdeactivatei
r as software and the implementation for

the smart carddeactivatei
c as hardware.

It might be a good place to add here that bothactivatei
c anddeactivatei

c imple-

ment one and the same ITL and Tempura constructstable which is easily imple-

mented by non-volatile memory cell since the value there must survive¬Vcc, i.e.

power down.

• Turning my attention towardsreset, I see the following in the standard

– RST in low for at least400 clock cycles;

– State high onI/O, i.e. reception mode;

– Vpp low;

– BLK is stable;

In addition, the standard says that thereset procedure must complete in40000

clock cycles, i.e.len(80000) for the ITL/Tempura specification since a clock cycle

takes an interval with length 2 — one forCLK and one for¬CLK.

CHAPTER 7. A Case Study — Smart Card Application 158

This requirement is formalised by the following finite formula.

reset =̂ 2m (¬Vpp) ∧ stable (BLK) ∧ (Requestreset; Responsereset)

whereRequestreset andResponsereset are defined by

Requestreset =̂∃t r (t ≥ 40000 ∧ len(2t) ∧ 2m (¬RST ∧ I/O));

∃t r (400 ≤ t < 40000 ∧ len(2t) ∧ 2m (RST ∧ I/O))

Responsereset =̂2m RST ∧ (L ; H ; H ; L ; len(3etu) ; L ; L ; H)

and whereL =̂ len(etu) ∧ 2m ¬I/O, H =̂ len(etu) ∧ 2m I/O andetu =̂ 744 stands

for Elementary Unit Time as defined by [91]. If I denotereqreset =̂ (len(2c′) ∧

2m (¬RST ∧ I/O));(len(2c′′) ∧ 2m (RST ∧ I/O)) wherec′ = 40000 andc′′ = 400, then

I will obviously haveRequestreset v reqreset. I will now need to split the specifi-

cation forreset between the card and the reader and therefore I will need to define

theresetr =̂ reqreset ; len(10etu) andresetc =̂ len(2(c′ + c′′)) ; Responsereset

parts for the reader and the card correspondingly. Having split the parts between the

card and the reader, I will need to compositionally refinereset which is obviously

refined by the conjunction of the following two assumption-commitment pairs

q1 ⊃ reset ∧ fin q2 v q1 ⊃ resetr ∧ resetc ∧ fin q2

CHAPTER 7. A Case Study — Smart Card Application 159

which is further refined by the conjunction of

q1 ∧ Assr ∧ reseti
r ⊃ resetr ∧ fin q2

and

q1 ∧ Assc ∧ reseti
c ⊃ resetc ∧ fin q2

whereAssr =̂ resetc is an assumption for the reader andAssc =̂ resetr is an

assumption for the card and in the mean timereseti
r is an implementation for the

reader andreseti
c implements the smart card with the implementation of the reader

reseti
r as software and the implementation for the smart cardreseti

c as hardware.

• With not reset I have very little difficulties because of the ability of ITL to negate

behaviour.

not reset =̂ 2m (¬Vpp) ∧ stable (BLK) ∧ (Requestreset; FailedResponsereset)

and where

FailedResponsereset =̂ 2m RST ∧ ¬(L ; H ; H ; L ; len(3etu) ; L ; L ; H)

CHAPTER 7. A Case Study — Smart Card Application 160

and as withreset I can give the definitions fornot resetr ≡ resetr, i.e. the

reader behaves as for a normal reset, andnot resetc ≡ len(2(c′ + c′′));

FailedResponsereset, i.e. the card fails to reset and the compositional refinement

for the parts of the specification for the card and the reader.

q2 ⊃ not reset ∧ fin q1 v q2 ⊃ not resetr ∧ not resetc ∧ fin q1

which is further refined by the conjunction of

q2 ∧ Assr ∧ not reseti
r ⊃ not resetr ∧ fin q1(7.23)

and

q2 ∧ Assc ∧ not reseti
c ⊃ not resetc ∧ fin q1(7.24)

whereAssr =̂ not resetc is an assumption for the reader andAssc =̂ not resetr

is an assumption for the card and in the mean timenot reseti
r is an implementation

for the reader andnot reseti
c implements the smart card with the implementation

of the readernot reseti
r as software and the implementation for the smart card

not reseti
c as hardware.

In very similar fashion, I can go through all the commands andstates shown on the au-

CHAPTER 7. A Case Study — Smart Card Application 161

tomaton in figure 7.3. This will give me a set of equations similar to (7.23) and (7.24).

This set will serve as a requirement for the actual implementation, i.e. all formulas of the

form reseti
c andreseti

r can be developed into real hardware and software to satisfy the

requirements of this set.

7.6 The Refinement into Tempura

I will go further and develop only one of the commands that thecard should be perform-

ing. I will choose the commandencrypt as a computationally demanding one. This

corresponds to the hardware branch of Step 2 from Figure 3.1 on page 27.

Let me see how the specification for that will look like. I knowthe general form of

the specification for acommand and therefore

q3 ⊃ encrypt ∧ fin q3

where

encrypt =̂2m (¬Vpp) ∧ stable (BLK) ∧

(ComCode(encrypt) ; ACK ; (P lainData ; ACK)for 12 bytes; L∗ ; H;

(EncrData; ACK)for 12 bytes).

CHAPTER 7. A Case Study — Smart Card Application 162

Here I assume thatComCode returns the command code for the given instruction,ACK

is Acknowledge (in some form or another),P lainData is the data to be encrypted,

EncrData is the result of the encryption and it is acknowledged every byte for 12 octets

(bytes).

I now need to split this specification between the reader and the card, i.e. I will have to

specifyencryptc andencryptr s.t.encryptc ∧ encryptr ⊃ encrypt. For that reason

I will need to specify the mechanism for communication between the two modules. I will

build this mechanism from 2 primitives, namelySndBit andRcvBit. Single bit can be

transmitted via theI/O channel by

SndBit(b) =̂ if (b = 0) then L else H

RcvBit(b) =̂ len(
etu

2
− 1) ; b := I/O ; len(

etu

2
)

I only have to remember thatRcvBit takes a memory variable as an argument. These

definitions guarantee

SndBit(a) ∧ RcvBit(b) ⊃ fin (a = b)

and can easily be generalised for a whole byte for example. So, with no loss of generality

I will write Snd andRcv whose arguments will be bytes. Now I can specify the parts for

CHAPTER 7. A Case Study — Smart Card Application 163

the card and the reader.

encryptr =̂2m (¬Vpp) ∧ (Snd(encrypt) ; Rcv(ACK);

(Snd(P lainData) ; Rcv(ACK))for 12 bytes; (while L do true);

len(H) ; (Rcv(EncrData); Snd(ACK))for 12 bytes)

and

encryptc =̂ stable (BLK) ∧ (Rcv(encrypt) ; Snd(ACK);

(Rcv(P lainData) ; Snd(ACK))for 12 bytes;

(L∗ ∧ fin (EncrData = P lainDatae mod M)) ; H;

(Snd(EncrData); Rcv(ACK))for 12 bytes)

where of course I have to make sure thatEncrData is the encryption of theP lainData,

i.e. EncrData = P lainDatae mod M is the RSA transformation. Now I can combine

the so definedencryptr andencryptc into the compositional specifications

q3 ∧ Assr ∧ encrypti
r ⊃ encryptr ∧ fin q3(7.25)

CHAPTER 7. A Case Study — Smart Card Application 164

and

q3 ∧ Assc ∧ encrypti
c ⊃ encryptc ∧ fin q3(7.26)

whereAssr =̂ encryptc is an assumption for the reader andAssc =̂ encryptr is an

assumption for the card and in the mean timeencrypti
r is an implementation for the

reader andencrypti
c implements the smart card.

Going further, I can develop theencrypti
c implementation so that it fits in (7.26), i.e.

I need to show how exactly I will implementencryptc havingAssc =̂ encryptr in mind

as well. It is fairly straightforward to refinestable (BLK). All I need to do is declare a

memory variableVBLK with

(7.27) ∃VBLK
r true.

Next I must refineRcv(encrypt) andSnd(ACK). All I need to do is watch out for the

leadingLHHL sequence and this is done by

(7.28) H∗ ; L ; H ; H ; L ; (Codeencrypt ∧ len(3etu)) ; L ; L ; H

and the idea is that if the card does not put the same sequence on theI/O line, then this

will result in false.

CHAPTER 7. A Case Study — Smart Card Application 165

Acknowledgement is easy to put on a line. It is the same as (7.28) but with change in

the code. I have

(7.29) H∗ ; L ; H ; H ; L ; (CodeACK ∧ len(3etu)) ; L ; L ; H

For Rcv(P lainData) I will need to declare a memory variable and I will name itT

for plain text. In addition,T is needed later in the specification, so it must be a global one.

The receive process can be specified by receiving each bit individually and acknowledging

the bytes in between. So I haveTj are the bits and

Rcv(T0) ; Rcv(T1) ; Rcv(T2) ; Rcv(T3) ; Rcv(T4);(7.30)

Rcv(T5) ; Rcv(T6) ; Rcv(T7) ; Snd(ACK)

and I can repeat the same sequence for the rest of the 12 bytes.

I will have to implement the actual encryption now. Here I will reference to the en-

crypted data asX .

X := 1;(7.31)

(I/O = 0 ∧ X := X ∗ T mod M)e

and all that is left is to send the encrypted data and check foran acknowledgement on the

CHAPTER 7. A Case Study — Smart Card Application 166

way, which I already know how to do. Combining all specifications (7.27), (7.28), (7.29),

(7.30) and (7.31) into one gives me

encrypti
r =̂ ∃VBLK

r true ∧ ∃T ,X r(7.32)

(H∗ ; L ; H ; H ; L ; (Codeencrypt ∧ len(3etu)) ; L ; L ; H;

H∗ ; L ; H ; H ; L ; (CodeACK ∧ len(3etu)) ; L ; L ; H;

Rcv(T0) ; Rcv(T1) ; Rcv(T2) ; Rcv(T3) ; Rcv(T4);

Rcv(T5) ; Rcv(T6) ; Rcv(T7) ; Snd(ACK);

. . .

X := 1;

(I/O = 0 ∧ X := X ∗ T mod M)e ; H;

Snd(X0) ; Snd(X1) ; Snd(X2) ; Snd(X3) ; Snd(X4);

Snd(X5) ; Snd(X6) ; Snd(X7) ; Rcv(ACK) ; . . .)

It is now quite obvious that the specification forencrypti
r is deterministic and con-

crete, i.e. this is a Tempura specification which I can implement in Verilog. The. . . in

the specification are for the repeatedRcv andSnd statements which are similar to what I

have in (7.32).

CHAPTER 7. A Case Study — Smart Card Application 167

7.7 The Refinement into Verilog

Finally, I can perform Step 3, or rather the hardware part of it, from Figure 3.1 on page 27,

where I give the refinement into Verilog.

There are several important stages in (7.32). The first one isthe beginningH∗ ;L. I can

easily show the refinement ofH∗ ; f where¬(f ⊃ 3i H+), i.e. f does not start withH. Let

P be the following program.

module H∗ ; f(I/O, CLK);

reg i ;

initial begin

i = 0 ;

while (I/O = 1) begin

i = etu ;

while (I/O = 1 and i > 0) begin

@(CLK) ; i = i− 1 ;

end

end

if (i <= 0) f ; endmodule

CHAPTER 7. A Case Study — Smart Card Application 168

I will show that if f is refinement forf in the sense thatf v ‖f ‖, then I have

H∗ ; f v ‖P ‖, i.e.P is refinement ofH∗ ; f . The translation ofP into LT + will be the

following.

∃Initial.active, T ime, I, Disable r

clock(Disable) ∧ 2(Disable = Initial.active) ∧ I = ⊥

{

(I := 0 ∧ Initial.active = true);

while (I/O = 1) do (

(I := etu ∧ Initial.active = true);

while (I/O = 1 ∧ I > 0) do (

while (¬ ∼ (CLK)) do (Initial.active = false∧ skip);

(I := I − 1 ∧ Initial.active = true);

)

);

if (I <= 0) then ‖f ‖;

}

I can proveH∗ ;f v ‖P ‖ by considering two cases. First, I will start with the innermost

CHAPTER 7. A Case Study — Smart Card Application 169

while which, assuming23 ∼ (CLK) — a global assumption guaranteed by (7.22) —

gives me

while (¬ ∼ (CLK)) do (Initial.active = false∧ skip) ⊃ stable (CLK).

Turning my attention to the middlewhile , it is quite obvious that

(I := etu ∧ Initial.active = true);

while (I/O = 1 ∧ I > 0) do (

stable (CLK);

(I := I − 1 ∧ Initial.active = true);

)

⊃

finite ∧ (I/O = 1 ∧ I > 0 ∧ stable (CLK))n
∧

fin(I/O = 0 ∨ I <= 0) ∧ n ≤ etu ∧ (n < etu ≡ I > 0)

⊃

n = etu ⊃ H

for somen. The last implication uses the assumptionAssc =̂ encryptr where we

CHAPTER 7. A Case Study — Smart Card Application 170

have embedded the behaviour for anH. The important part of the last formula is that if

I have less thanetu number of repetitions for(I/O = 1 ∧ I > 0 ∧ stable (CLK)), then

I > 0. This obviously would have meant that there was a partialH on the line, i.e. the

behaviour of the reader is unexpected.

The outerwhile is now fairly simple. I have there

while (I/O = 1) do H ⊃ H∗

and with the last check for completeH all the way through, i.e.if (I <= 0) then ‖f ‖ I

can get the desiredH∗ ; f .

On the way, I have shown the refinement ofL andH which is all based on

i = etu ;

while (I/O = bit and i > 0) begin

@(CLK) ; i = i− 1 ;

end

wherebit is 0 or 1 for the appropriate cases.

The refinement forSnd andRcv is even simpler. I only need to remember that

SndBit(b) =̂ if (b = 0) then L else H

CHAPTER 7. A Case Study — Smart Card Application 171

and in this case the refinement ofL andH will be as follows

i = etu ; I/O := b ;

while (i > 0) begin @(CLK) ; i = i− 1 ; end

whereb will be 0 or 1 for the appropriate case. The difference in the refinement here is

that in the previous case I had to check if the opposite side, in my case the reader, kept the

I/O line in 0 or 1 for the designated time ofetu. Here I implicitly assign this value to it.

The refinement ofRcv, where

RcvBit(b) =̂ len(
etu

2
− 1) ; b := I/O ; len(

etu

2
)

is as follows

i = etu/2− 1 ;

while (i > 0) begin @(CLK) ; i = i− 1 ; end

b := I/O ; i = etu/2 ;

while (i > 0) begin @(CLK) ; i = i− 1 ; end

and the proof that this is the refinement can be easily derivedfrom the proof forH∗ ; f

above.

CHAPTER 7. A Case Study — Smart Card Application 172

The only part of (7.32) that still needs implementation in Verilog is the part where the

actual encryption is performed, i.e. (7.31). However, thisis an obvious while construct

since thef e form and poses no difficulties in the refinement. Namely I have

x = 1 ; i = e ;

while (i > 0) begin I/O = 0 ; x = x ∗ T mod M ; end

for the refinement of the actual encryption.

7.8 Summary

I believe the case study in this chapter is industrially relevant. The development process

goes through all major steps of my initial methodology for codesign as stated in chapter 3

and figure 3.1 and I prove properties of interest about the system at every point of the

refinement. The sheer size of the case study prevented me frompursuing the final result

in its completeness. However, I hope the reader will be convinced that the practicality of

my approach has been successfully demonstrated.

Chapter 8

Conclusion

8.1 Vision

I started this project with a vision for acompositionalmethodology which would allow

me to blend software and hardware in a seamless way. I also aimed for a methodology

with built-in rigorous reasoning about the design process and the properties of the required

system.

The benefits of such an approach could be viewed in two ways. The compositional

theory [88, 35, 19, 17, 65, 63] states that I would be able to reason about a system, or any

of its subsystems, within its context. Thus I can guarantee:

1. a system that will co-operate with its intended environment and will not be a closed

component but rather an open one,

173

CHAPTER 8. Conclusion 174

2. a black-box abstraction where I view a system, or any of itssubsystems, as a pair

of an interface and a behaviour,

3. the ability to infer properties about the system from the properties of its subsystems

and

4. the ability to derive requirements for the subsystems from the requirements towards

the system as a whole.

The first two have a profound effect on the usability of the designed system. The view

that a system should be nothing more than a pair of an interface and a behaviour allows

me to say that any environment that falls within the assumptions of the interface and the

behaviour will be a suitable match for the system; thereforeI will simply “connect” it

with the environment and “plug-and-play” with it. Also, thecoupling of the environment

and the system enforces a reactive computational model uponme, since the communi-

cation (albeit synchronous or asynchronous) must be based on messages and/or events.

Therefore, the underlying computational model has to come as a reaction to the messages

and/or events exchanged between the environment and the system.

The last two allow me to incorporate two types of design, namely top-down and

bottom-up design, in a systematic way. Thus, if I can infer properties of the system as a

whole from the properties of its components; then I can construct larger systems out of

smaller parts and this facilitates reuse, bottom-up designand backwards engineering. On

the other hand, if I can derive the requirements for the components from the requirements

CHAPTER 8. Conclusion 175

towards the whole system, then I enable top-down design and forward engineering.

It is interesting to note here that the synthesis between thebottom-up and top-down

designs gives me another possible alley for exploration — the abstraction of requirements

from an existing system, combined with further re-development — and this results in

re-engineering and migration.

The other important aspect of my vision was the rigorous reasoning about the design

process and the properties of the designed system. It has to be said that our expecta-

tions towards the stability, reliability and correctness of the systems we use are constantly

increasing. More and more activities now depend on the correct performance of a com-

puter system of some sort and we seem to have little tolerancefor crashes, incorrect or

unexpected behaviour, down-time and unavailability. I canfind this level of expectation

towards the system not only in safety-critical applications, where lives could be at risk, but

also in business-critical environments, where the survival of a whole organisation might

depend on the correct and expected performance of the underlying computer infrastruc-

ture.

My second fundamental vision was for a methodology that would allow me to specify

a system in a very abstract way regardless of its intended target implementation. I be-

lieve that starting from a highly abstract representation of the system allows me to blur

the differences between hardware and software. At the beginning I am interested in the

desired behaviour only and this makes no distinction between technologies, architectures,

communication paradigms, etc. Although this may seem insensitive, it gives me a chance

CHAPTER 8. Conclusion 176

to think about the system in terms of behaviour, interface, requirement, components, etc.,

rather than programming or hardware description language,source code or net-list size,

involved software or hardware technologies, etc. Only at a later stage of the development

I start taking into consideration other important issues such as the issue of underlying

architecture.

8.2 Achievement

In chapter 3 I clearly state the overall methodology for co-design as depicted in figure 3.1

on page 27. I start from a high-level and abstract specification and then I progress with

the development throughcorrectness preservingrefinement steps.

Throughout the whole project, my main high-level specification language and mech-

anism for reasoning has been the Interval Temporal Logic (ITL). This has been the bed-

rock of my methodology and I have tried to relate all my reasoning to that.

Once I capture the desired properties of the system with an ITL formula I can prove

that they are not conflicting by using the Tempura tool. When Iam satisfied with the level

of correctness with which I have captured the requirements Ican then start developing

the system by using the set of compositional refinement laws presented in section 3.6

pages 48 onwards. The desired result is a deterministic representation of the system in

Tempura, which is an executable subset of ITL.

At this point I reason about the architecture that is most suited for the application and

CHAPTER 8. Conclusion 177

I obtain a set of Tempura modules. Again I can use the tools within the Tempura tool to

simulate and verify properties about the obtained Tempura code. In section 3.6.2 I explain

how I can simulate and analyse Tempura code within the Tempura tool. A screen dump

of the tool is shown in figure 8.1 on page 185.

The next step of the methodology is to select which Tempura modules will be imple-

mented in hardware and which in software. Only at this stage do I consider technology

related issues and I can use a multitude of techniques for deciding the hardware-software

split [66, 47, 48, 55, 96]. Here I can also discuss communication issues between the dif-

ferent modules and compositionally verify them all thanks to theassumption-commitment

style refinement rules of ITL.

This is now the stage within my methodology when I have to takemy level of ab-

straction to real hardware and software, since I have to refine the hardware and the

software modules separately. As it has already been shown, the refinement to soft-

ware [13, 88, 14, 16, 86] is achievable. Therefore I had to concentrate my efforts into

finding a way to refine the Tempura specifications into my hardware description language

(HDL) of choice. This is where I realise the need for ITL basedsemantics for Verilog.

Once I have the abstraction gap between Tempura and Verilog bridged, I can then use

the existing Register Transfer Layer (RTL) to netlist synthesis tools and technologies via

commercially available synthesisers to achieve real hardware as on FPGA or ASIC.

However, there was a theoretical barrier I had to overcome inthe process. The prob-

lem was that the basic syntax and semantics for ITL and Tempura do not havememory

CHAPTER 8. Conclusion 178

variables as explained in section 3.4.3 (pages 41 onwards).As I show there, I can conser-

vatively introduce memory variables and I can even prove in theorem 1 on page 43 that

they have the basic “memory” property of keeping their values until explicit assignment

operators change them.

What followed as a result was an ITL based semantics for Verilog in chapter 4. There

I consider both Behavioural and RTL statements, thus bridging yet another abstraction

level gap within Verilog itself. Unlike most of the other approaches [90, 89, 67, 30],

mine deals with a rich core of the language, whereas only somecase like convenient but

non-essential constructs are left out.

Again in contrast to other attempts for the semantics of Verilog [94], where different

semantical models are constructed for the different abstraction levels within the language,

I achieve a single ITL based formalism throughout my work andI believe this facilitates

the refinement in a better way.

Admittedly, Verilog lacks a well accepted formal semanticsand therefore I felt the

need for a second perspective on the language. Two of the mainstyles of semantics are

denotational and operational. Since ITL provided me with denotational semantics for

Verilog, I decided to construct an operational semantics for Verilog as well. Unlike most

of the commercially available simulators, my operational semantics isfully parallel.

In chapter 5 I also formulate and prove several healthiness conditions on the opera-

tional semantics through theorems 1, 2 and 3 which I believe should be necessary for any

formalism defining the operational semantics for Verilog, being a simulator or not. At

CHAPTER 8. Conclusion 179

the end of the chapter I show how the operational semantics can be used for simulating

a program in Verilog, thus I show that the semantics is a blueprint for a simulator for the

language.

It was logical, after defining two different formalisms about the semantics for Verilog,

to prove that they are equivalent in the sense that the behaviour described by the denota-

tional semantics is precisely the one generated by the operational semantics. This would

guarantee the uniformity and boost the confidence in the trustworthiness of my work. The

outline of the proof is given in section 6.2 and the full details are spelled out in section 6.3.

The final chapter of my exposé introduces an industrially relevant case study of a smart

card application. It involves RSA asymmetrical encryptionand decryption on the smart

card chip itself. The rationale for this is that the smart card can protect the private key

best and therefore is the perfect candidate for such an application. I show there how I can

formalise and structurise the problem by using the refinement laws given in section 3.6.

This allows me to achieve a high level of modularity.

It was obvious to me that the case study was a formidable project on its own and

therefore I used it as a “proof-of-concept” only. I have given the refinement to only a

small part of the whole specification. However, I believe that the principles throughout

the case study are clear and applicable in industrially sized applications as well. I also

show there how I can use my ITL based semantics to refine a Tempura specification into

a program in Verilog.

CHAPTER 8. Conclusion 180

8.3 Related Work

Although Hardware/Software Codesign is a young discipline, with the earliest reference

dated 1992 at the First International Workshop on Hardware/Software Codesign [95],

there is a growing body of work devoted to the topic.

Figure 2.1 gives a typical design flow widely adopted as an initial idea. It quickly

became clear that this design flow has many practical problems inherited from the very

early design decision taken in accordance to it. For example, communication paradigms,

architecture and Hardware/Software split within the system are chosen early in the design

process without any validation of their suitability. Almost all of these design decisions

rely mostly on intuition and best practices rather than rigorous reasoning.

Another problem with the early approach could be described as “late integration” syn-

drome, i.e. the system integration occurs only after all sub-systems have been developed

to a considerable extend. This is considered very late in thedesign cycle, because only at

this late stage the designer can validate and justify the design decisions taken at the very

beginning of the development. This problem is particularlyimportant because it magnifies

the difficulty and the complexity of a project withchangingsystem requirements.

One major thread within the Hardware/Software Codesign research and development

has been the idea ofco-simulation[77, 2, 23]. This approach tries (systematically and/or

heuristically) to break the problem into smaller parts (sub-problems, tasks, computation

entities, basic scheduling blocks, etc.) and to allocate each part into software or hardware.

CHAPTER 8. Conclusion 181

The core objective is to find the best configuration, with respect to speed of execution and

communication, between the software code and the hardware ASIC/FPGA implementa-

tion. In effect, we can view the problem as granularity and optimisation [47, 48, 55, 96].

The architecture selection is an important issue within theHardware/Software Code-

sign. Generally we can assume that it is a mapping process from system’s functionality

to a set of (predefined) components, i.e. targeted architecture. Using this technique, suc-

cessful automation has been achieved in applications involving a memory hierarchy or an

I/O subsystem design based on standard components. In addition to that, there are some

alternative approaches on retargetable compilation [79],or on an abstract partitioning for

co-design [42, 43, 69, 81].

Temporal and Spatial Partitioning as shown in figure 2.4 on page 22 is another im-

portant and interesting area of research. It achieves flexibility which, however, does not

come for free. A scheduler is a major part and it decides “on the fly” how to partition the

code into compiled program for a microprocessor and which will be used to reconfigure

the FPGA. The particularly interesting area of research in reconfigurable processors [52]

implements this idea.

Several different styles of semantics for Verilog [67, 30, 90, 89] have been proposed.

However, the complexity of the language proves a difficult challenge for some and they

consider subsets of the language, while others choose to useseveral different semantics

for different levels of abstraction within the language.

My work contributes to the body of research in Hardware/Software Codesign in sev-

CHAPTER 8. Conclusion 182

eral ways:

1. I develop a unifying and compositional framework for Codesign based on pairs of

assumptions and commitments.

2. I propose stepwise formal refinement as a sound tool for thecorrect development

of mixed hardware/software systems.

3. I use Interval Temporal Logic (ITL) as a bedrock for my reasoning.

4. I integrate simulation in my framework through the existing Tempura tool.

5. I construct a denotational semantics for Verilog which isthen used to define the

refinement relation between ITL, Behavioural Verilog and RTL Verilog in a formal

manner.

6. I construct an operational semantics for Verilog, define and prove several health-

iness conditions and show full parallelism for it. It can serve as a blueprint for a

real simulator for Verilog whose full parallelism and formal underpinning would be

unique.

7. I prove equivalence between our denotational and operational semantics for the

language.

8. I test my theory on an industrially relevant case study. RSA asymmetrical encryp-

tion is performed on a smart card chip for improved security.

CHAPTER 8. Conclusion 183

8.4 Future Work

I can see two major possible expansions of this work — a theoretical and a practical one.

The careful reader would notice that the operational semantics as presented here can

capture a much bigger set of constructs. The obvious non-conservative extension could be

sentences which combine Behavioural and RTL constructs sequentially, rather than just

in parallel as it is within the language now. Currently Verilog does not have constructs

like

initial statement ; assign

that one would like to interpret as an atom which sets some variables initially and then

proceeds with the RTL behaviour of theassign statement.

A more interesting combination of this approach would have been

assign ; initial statement

where the possibly infinite behaviour ofassign is followed by another statement. One

can use this combination to expressfault tolerance and recovery, i.e. if theassign fails,

then theinitial statement will take care of the consequences.

Another important issue is a possiblealgebraicsemantics for Verilog. We will be able

CHAPTER 8. Conclusion 184

to define an algebraic equation of the following kind

V1 = V2 ,

whereV1 andV2 are two Verilog constructs, by proving that their denotational semantical

meanings are equivalent, i.e.

‖V1 ‖ ≡ ‖V2 ‖

or by proving that the operational runs generated by the two constructs are equivalent.

One can view the latter asbi-simulationbetween the two sentences.

An algebraic semantics of this form could be used for optimisation, since the algebraic

style semantics involves a system of equations, i.e. equivalences, therefore we can use

such semantics for equivalently transforming a Verilog program into a “better” form. Here

“better” might mean “faster”, “smaller” or “cheaper” implementation in real hardware.

A practical set of refinement laws to guide our developer-centred methodology is also

desirable. The denotational semantics for Verilog will serve as a definitive criteria for the

soundness of each refinement law as stated by (4.1). However,we will need to develop

many more case studies and try our theory on them before claiming “practicality”.

There could be some practical work done to extend this project. As shown, our oper-

ational semantics is, in effect, a simulator for the language. Therefore, we can attempt to

develop such a simulator. Thefull parallelismwould have made it unique among all other

CHAPTER 8. Conclusion 185

Figure 8.1: Tempura

Verilog simulators available. In addition to that, we couldintegrate the simulator with

Tempura (see figures 8.1 above and 3.2 on page 52) which can then test how the simulator

will compare with other known simulators.

References

[1] IEEE, IEEE Standard for Verilog Hardware Description Language, IEEE, 1364-

2001, 2001.

[2] Allara A., Brandolese C., Fornaciari W., Salice F. and Sciuto D., “System-Level Per-

formance Estimation Strategy for Sw and Hw”, inProceedings of the International

Conference on Computer Design 1998, IEEE, 1998.

[3] Balarin F., “Hardware-Software Co-Design of Embedded Systems: The Polis Ap-

proach”, Kluwer Academic Publishers, 1997.

[4] Beer I., “The Temporal Logic Sugar”, inProceedings of CAV 2001, LNCS, Springer-

Verlag, 2001.

[5] Beneviste, A. and Berry G., “The Synchronous Approach toReactive and Real-Rime

Systems”,Proceedings of IEEE, 79(9), pp. 1268-1336, 1991.

[6] Beth E.,The Foundation of Mathematics, second edition, 1965.

186

REFERENCES 187

[7] Börger E. and Del Castillo G., “A Formal Method for Provably Correct Composi-

tion of a Real-Life Processor Out of Basic Components”, inProceedings of the 1st

ICECCS’95, IEEE Computer Society Press, 1995.

[8] Borrione D., “A Functional Approach to Formal Hardware Verification”, inProc. of

ICCD-88, 1988.

[9] Brigham E.,The Fast Fourier Transform, Prentice Hall, 1974.

[10] Burgelman R., Carter D. and Bamford R., “Intel Corporation: The Evolution of an

Adaptive Organization”

http://www.aom.pace.edu/meetings/1999/INTEL.htm

[11] Castillo G. and Hardt W., “Towards a Unified Analysis Methodology of HW/SW

Systems Based on Abstract State Machines: Modelling of Instruction Sets”, inPro-

ceedings of the GI/ITG/GMM Workshop, Paderborn, 1998.

[12] Cau A., Hale R., Dimitrov J., Zedan H., Moszkowski B., Manjunathaiah M. and

Spivey M., “A Compositional Framework for Hardware/Software Co-Design”, in

Camposano R., Wolf W. (eds.)Design Automation for Embedded Systems, Kluwer,

2002.

[13] Cau A. and Zedan H., “Refining Interval Temporal Logic specifications”, in Eds.

Bertran M., Rus T.Transformation-Based Reactive Systems Development, LNCS

Vol. 1231, pp. 79–94, Springer 1997.

REFERENCES 188

[14] Cau A. and Zedan H., “The Systematic Construction of Information Systems”, in

Henderson P. (ed.)Systems Engineering for Business Process Change, Springer Ver-

lag, 2000.

[15] Chaochen Z., Hoare C.A.R. and Ravn A., “ A Calculus of Durations”, Information

Processing Letters, Vol 40, No 5, pp. 269 – 276, December 1991.

[16] Chen Z., Zedan H., Cau A. and Yang H., “A Wide-Spectrum Language for Object-

Based Development of Real-time Systems”,International Journal of Information

Sciences, Vol 118, pp. 15-35, 1999.

[17] Clarke E., “Compositional Model Checking”, inProc. Workshop on Automatic Veri-

fication Methods for Finite State Systemsed. Sifakis J., LNCS 407, Springer Verlag,

1989.

[18] Comer D.,Internetworking with TCP/IP, Vol. 1 and 2, Englewood Cliffs, London,

Prentice Hall, 1991.

[19] de Roever W., de Boer F., Hannemann U., Hooman J., Lakhnech Y., Poel M. and

Zwiers J.,Concurrency Verification: Introduction to Compositional and Noncompo-

sitional Methods, Cambridge University Press, 2001.

[20] Dimitrov J., “Compositional Reasoning about Events inInterval Temporal Logic”,

in Proceedings of JCIS 2000, pp. 675-678, Association for Intelligent Machinery,

Atlantic City, Feb–Mar 2000.

REFERENCES 189

[21] Dimitrov J., “Interval Temporal Logic (ITL) Semanticsfor Verilog”, IEE event on

Hardware-Software Co-Design, IEE, London, 8th December 2000.

[22] Dimitrov J., “Operational Semantics for Verilog”, inProceedings of APSEC 2001,

pp. 161–168, IEEE, Macau, Dec 2001.

[23] Dreike P. and McCoy J., “Cosimulating Hardware and Software in Embedded Sys-

tems”, in Proceedings Embedded Systems Programming Europe, IEEE Computer

Society Press, 1997.

[24] Eles P., “Codesign of Embedded Systems: Where are we now”, IEE event on

Hardware-Software Co-Design, IEE, London, 8th December 2000.

[25] Edwards S., Lavagno L., Lee E. and Sangiovanni-Vincentelli A., “Design of Em-

bedded Systems: Formal Models, Validation, and Synthesis”, IEEE Proc, Vol. 85,

No. 3, March 1997, pp. 366–390.

[26] Ernst R., “Codesign of Embedded Systems: Status and Trends”, IEEE Design &

Test of Computers, pp. 45–54, 1998.

[27] Gajski D., Zhu J. and Domer R., “Essential Issues in Codesign”, Technical Report

ICS-TR-97-26, University of California, 1997.

[28] Giridhar P., Kumar V. and Mathai J., “The Mine Pump Control Program in Es-

terel”, Research Report CS-RR-332, Department of ComputerScience, University

REFERENCES 190

of Warwick, 1997. A full bibliography and copy of this paper is available through

http://www.dcs.warwick.ac.uk/pub/reports/rr/332.htm l

[29] Golze U., VLSI Chip Design with the Hardware Description Language Verilog,

Springer-Verlag, Berlin, 1996.

[30] Gordon M., “The Semantic Challenge of Verilog HDL” inProceedings, Tenth An-

nual IEEE Symposium on Logic in Computer Science, pp. 136–145, San Diego,

California, 26–29 June 1995.

[31] Gordon M. and Melham T.,Introduction to HOL: A theorem Proving Environment

for Higher Order Logic, Cambridge University Press, 1993.

[32] Hale R.,Programming in Temporal Logic, PhD dissertation, Cambridge University

1988.

[33] Hansen M. and Chaochen Z., “Semantics and Completenessof DC” in de Bakker

J., Huizing C., de Roever W., Rozenberg G. (editors)Real-time: theory in practice,

Lecture notes in computer science Vol. 600, June 1991, pp. 209–225.

[34] Hoare C.A.R. and Jifeng H.,Unifying Theories of Programming, Prentice Hall,

1998.

[35] Henzinger T., Qadeer S. and Rajamani S., “Decomposing Refinement Proofs Using

Assume-Guarantee Reasoning”, In Int. Conf.Computer-aided Design, pp. 245–252,

IEEE Computer Society Press, 2000.

REFERENCES 191

[36] Henzinger T., The Temporal Specification and Verification of Real Time Sys-

tems, PhD thesis, Stanford University, A full copy of this work can be found at

http://www-cad.eecs.berkeley.edu/˜tah/Publications/

[37] Hollander Y., Morley M. and Noy A., “Thee Language: A Fresh Separation of

Concerns”, inProceedings of TOOLS Europe 2001, IEEE Computer Society Press,

2001.

[38] Holzmann G.,Design and Validation of Computer Protocols, Prentice-Hall, 1990.

[39] Hong I., Kirovski D., Qu G., Potkonjak M. and SrivastavaB., “Power Optimization

of Variable Voltage Core-Based Systems”, inProceedings of DAC, pp. 176–181,

June 1998.

[40] Imperato M.,An Introduction to Z, Chartwell-Bratt, 1991.

[41] Jifeng H., Page I. and Bowen J., “Towards a Provably Correct Hardware Imple-

mentation of Occam”, in Milne G.J., Pierre L. (ed)Correct Hardware Design and

Verification Methods, Proc. IFIP WG10.2 Advanced Research Working Conference,

CHARME’93, LNCS 683, Springer-Verlag, 1993.

[42] Kumar S., Aylor J., Johnson B. and Wulf W., “A Framework for Hardware/Software

Codesign”, inProc. of the Int. Workshop on Hardware-Software Codesign, Sept.

1992.

REFERENCES 192

[43] Kumar S., Aylor J., Johnson B. and Wulf W., “Exploring Hardware/Software

Abstractions and Alternatives for Codesign”, inProc. of the Int. Workshop on

Hardware-Software Codesign, Oct. 1993.

[44] Hunt W., “FM8501: A Verified Microprocessor”, inProc of IFIP WG 10.2 Work-

shop: From HDL To Guaranteed Correct Circuit Designs, 1986.

[45] Karkowski I., “Computer Aided Embedded Systems Design”, in Proceedings of the

Third Annual Conf. of ASCI, Heijen, The Netherlands, 2–4 June 1997.

[46] Kleinjohann B., Tacken J. and Tahedl C., “Towards a Complete Design Method

for Embedded Systems Using Predicate/Transition-Nets”, in Proceedings of the

XIII IFIP WG 10.5 Conference on Computer Hardware Description Languages and

Their Applictations (CHDL-97), pp. 4–23, Toledo, Spain, April 1997.

[47] Kundsen P. and Madsen J., “Communication Estimation for Hardware/Software

Codesign”, 6th International Workshop on Hardware/Software Codesign,

Codes/CASHE’98.

[48] Kundsen P. and Madsen J., “PACE: A Dynamic Programming Algorithm for Hard-

ware/Software Partitioning”,4th International Workshop on Hardware/Software

Codesign, Codes/CASHE’96.

[49] Kurshan R., Computer-Aided Verification of Coordinating Processes: The

Automata-Theoretic Approach, Princeton University Press, 1994.

REFERENCES 193

[50] Lavenier D., Quinton P. and Rajopadhye S, “Chapter 5, Digital Signal Processing

for MultiMedia Systems”, in Eds. Parhi, HishitaniAdvanced Systolic Design, 1999

[51] Leupers R. and Marwedel P., “Retargetable Code Generation Based on Structural

Processor Descriptions”,Design Automation for Embedded Systems, vol. 3, no. 1,

1998.

[52] Li Y., “Hardware-Software Co-Design of Embedded Reconfigurable Architectures”

DAC 2000, p. 507, Los Angeles, USA.

[53] Liu Z., Ravn A. and Li X., “Compositional Verification ofDuration Properties of

Real-Time Systems”, Technical report No. 1997/30, Department of mathematics &

computer science, University of Leicester.

[54] Lüettgen G. and Mendler M., “Towards a Model-Theory for Esterel”, inProceedings

of SLAP, 2002.

[55] Madsen J., “LYCOS: the Lyngby Co-Synthesis System”, inDesign Automation for

Embedded Systems, Volume 2, Issue 2, pp. 195–235, Kluwer Academic Publishers,

March 1997.

[56] Manna Z. and Pnueli A.,The Temporal Logic of Reactive and Concurrent Systems:

Specification, 1991

[57] Mathai J.,Real-Time Systems: Specification, Verification and Analysis, 1996.

REFERENCES 194

[58] Megson G.M.,An Introduction to Systolic Algorithm Design, Oxford University

Press, 1992.

[59] Mosses P., “Foundation of Modular SOS”, in Kutylowski,Pacholski, Wierzbicki

ed.Mathematical foundations of computer science: 24th international symposium,

LNCS 1672, 1999.

[60] Moszkowski B., “A Complete Axiomatization of IntervalTemporal Logic with Infi-

nite Time”, inproc. of the Fifteenth Annual IEEE Symposium on Logic in Computer

Science (LICS 2000), IEEE Computer Society Press, June 26-29, 2000, Santa Bar-

bara, California, USA, pp. 242–251.

[61] Moszkowski B., “A Temporal Logic for Multilevel Reasoning about Hardware”,

IEEE Computer, Vol. 18, no. 2, 1985, pp. 10-19.

[62] Moszkowski B., “An Automata-Theoretic Completeness Proof for Interval Temporal

Logic”, eds Montanari U., Rolim J, Welzl E., inLecture Notes in Computer Science,

1853, Springer-Verlag. Geneva, Switzerland, July 9–15, 2000, pp. 223–234.

[63] Moszkowski B., “Compositional Reasoning about Projected and Infinite time”

in Proc. First IEEE Int’l Conf. on Engineering of Complex Computer Systems

(ICECCS’95), IEEE Computer Society Press, 1995, pp. 238–245.

[64] Moszkowski B.,Executing Temporal Logic Programs, Cambridge University Press,

1986.

REFERENCES 195

[65] Moszkowski B., “Some Very Compositional Temporal Properties” in Olderlog E.

(ed.) Programming concepts, Methods and Calculi, IFIP Transactions, Vol. A-56,

North-Holland 1994, pp. 307–326.

[66] Nielson F., Nielson H.R. and Hankin C.,Principles of Program Analysis, Springer-

Verlag, 1999.

[67] Pace G., “The Semantics of Verilog Using Transition System Combinators”, in Proc.

Formal Methods in Computer-Aided Design, 2000.

[68] Plotkin G.,A Structural Approach to Operational SemanticsLecture notes DAIMI

FN-19, 1981

[69] Prakash S. and Parker A., “Synthesis of Application-Specific Multi-Processor Ar-

chitectures”, inProc. of the Design Automation Conf, June 1991.

[70] Ravn A., Rischel H. and Hansen K., “Specifying and Verifying Requirements for

Real-Time Systems”,IEEE Transactions on Software Engineering, Vol 19, No 1,

pp. 41 – 55, January 1993.

[71] Sagdeo V.,The Complete Verilog Book, Kluwer Academic Publishers, 1998.

[72] Sampat N., Zedan H. and O’Callaghan A., “From Business Needs to Software So-

lutions: Comparing Use Case Driven Approaches for Component Based Develop-

ment”, in Proceedings of The Fifth International Conference on Computer Science

and Informatics(CS&I’2000), 2000.

REFERENCES 196

[73] Sander I. and Jantsch A., “Formal System Design Based onthe Synchrony Hypoth-

esis, Functional Models, and Skeletons”, inProceedings of the IEEE International

Conference on VLSI Design, 1999.

[74] Schrott G. and Tempelmeier T., “Putting Hardware-Software Codesign into Prac-

tice”, in Preprints of the 22th IFAC/IFIP Workshop on Real Time Programming,

Lyon, France, Sept 15–17, 1997.

[75] Shelfer K. and Procaccino J., “Smart Card Evolution”,Communications of ACM,

Vol. 45, No. 7, July 2002.

[76] Spivey M. and Page I.,How to Program in Handel, Technical report, see

http://www.comlab.ox.ac.uk/oucl/hwcomp.html , Oxford Univer-

sity Computing Laboratory, 1993.

[77] Soininen J., Huttunen T., Tiensyrja K. and Heusala H., “Cosimulation of Real-Time

Control Systems”, inProceedings of the European Design Automation Conference

with EURO-VHDL ’95, IEEE Computer Society Press, 1996.

[78] Sorensen E., Revn A. and Rischel H.,Control Program for a Gas Burner: Part 1:

Informal Requirements, ProCoS Case Study 1, ProCoS Report ID/DTHEVS2, 1990.

[79] Theissinger M., Stravers P., Veit H. “CASTLE: an Interactive Environment for

Hardware-Software Co-design”, inProc. of the Int. Workshop on Hardware-

Software Codesign, 1994.

REFERENCES 197

[80] Thomas D. and Moorby P.,The Verilog Hardware Description Language, Kluwer

Academic Publishers, ISBN 0792381661, May 1998.

[81] Vahid F. and Gajski D., “Specification Partitioning forSystem Design”, inProc. of

the Design Automation Conf, June 1992.

[82] Verkest D., “Matisse: A System-on-Chip Design Methodology Emphasizing Dy-

namic Memory Management”,Journal of VLSI Signal Processing, 21(3): 277–291,

July 1999

[83] Wingard D., “MicroNetwork-Based Integration of SOCs”, in Proceedings of the

38th Design Automation Conference, June 2001.

[84] Yang H., Liu X. and Zedan H., “Abstraction: A Key Notion for Reverse Engineering

in A System Reengineering Approach”,Journal of Software Maintenance: Research

and Practice, 12(5):197-228, 2000.

[85] Zedan H. and Cau A., “A Logic-Based Approach for Hardware/Software Co-

design”,IEE event on Hardware-Software Co-Design, IEE, London, 8th December

2000.

[86] Zedan H., Cau A., Chen Z. and Yang H., “ATOM: An Object-based Formal Method

for Real-time Systems”Annals of Software Engineering, Vol. 7, 1999.

[87] Zhang Y.,A Foundation for the Design and Analysis of Robotic Systems and Be-

haviours, PhD thesis, University of British Columbia.

REFERENCES 198

[88] Zhou S., Zedan H. and Cau A., “A Framework For Analysing The Effect of ‘Change’

In Legacy Code”, inIEEE Proc. of ICSM’99, 1999.

[89] Zhu H., Bowen J. and Jifeng H., “From Operational Semantics to Denotational Se-

mantics for Verilog” InProceedings, 11th CHARME, 2001.

[90] Zhu H. and Jifeng H.,A DC-Based Semantics for VerilogUNU/IIST Report 183.

[91] ISO/IEC 7816, This set of standards can be purchased from ISO at

http://www.iso.ch/ A short and partial description of these standards can

be found athttp://www.scia.org/knowledgebase/

aboutsmartcards/iso7816 wimages.htm .

[92] RSA Laboratories, PKCS #1: RSA Encryption Standard, 1991—1993,

ftp://ftp.rsa.com/pub/pkcs/pkcs-1/pkcs-1v2-1d1.ps

[93] http://www.cse.dmu.ac.uk/˜cau/itlhomepage/index.htm l

[94] http://www.cl.cam.ac.uk/users/djs1002/verilog.proje ct/

[95] http://www.ece.uci.edu/˜codes/

[96] http://www.it.dtu.dk/˜lycos/

[97] http://www.uilondon.org/cherntim.html

