Deriving Operational Semantics
from Denotational Semantics for Verilog

Zhu Huibiao Jonathan P. Bowen
South Bank University
Centre for Applied Formal Methods
SCISM, Borough Road, London SE1 0AA, UK
Email: { huibiaz,bowenjp} @sbu.ac.uk
URL: http://www.cafm.sbu.ac.uk/

Abstract

This paper presents the derivation of an operational se-
mantics from a denotational semantics for a subset of the
widely used hardware description language Verilog. Our
aim is to build equivalence between the operational and de-
notational semantics. We propose a discrete denotational
semantic model for Verilog. A phase semantics is provided
for each type of transition in order to derive the operational
semantics.

1. Introduction

Modern hardware design typically uses a hardware de-
scription language (HDL) to express designs at various lev-
els of abstraction. An HDL is a high level programming
language, with usual programming constructs such as as-
signments, conditionals and iterations, and appropriate ex-
tensions for real-time, concurrency and data structures suit-
able for modelling hardware. Verilog is an HDL that has
been standardized and widely used in industry [6]. Verilog
programs can exhibit a rich variety of behaviours, including
event-driven computation and shared-variable concurrency.

The semantics for Verilog is very important. At
UNUI/IIST, the operational semantics has been explored in
[1, 3, 4, 7]. Verilog’s denotational semantics [9] has also
been explored based on the operational semantics using Du-
ration Calculus [8]. The two semantics can be considered
equivalent informally. The question is how the two seman-
tics can be proved equivalent formally. We have already
investigated the derivation of denotational semantics from
operational semantics for Verilog [10]. Therefore we have
a method to guarantee the two semantics are equivalent.

This paper considers the inverse approach of the equiv-
alence of the two semantics. The aim is to derive the oper-
ational semantics for Verilog from its denotational seman-

He Jifeng
The United Nations University
International Institute for Software Technology
UNU/IST, P.O. Box 3058, Macau, China
Email: jifeng @iist.unu.edu
URL: http://www.iist.unu.edu/

tics. The similar problem was also investigated in [5] for
Dijkstra’s sequential language and Hoare’s CSP. In our pa-
per we define a transitional condition and a phase semantics
for each type of transition. A program is said to execute a
certain transition if the sequential composition of the phase
semantics and the denotational semantics of the process in
the transition’s right configuration (see section 3.1) implies
the denotational semantics of the process in the transition’s
left configuration.

This paper is organized as follows. Section 2 introduces
the language and presents a discrete denotational semantic
model. We also design a refinement calculus for this dis-
crete model. Section 3 is devoted to deriving the operational
semantics from its denotational semantics. We introduce
transition types for Verilog and define a phase semantics of
each type of transition. The denotational derivation of Ver-
ilog’s operational semantics is investigated in section 3.2
based on the phase semantics. We derive the operational
semantics for Verilog’s statements based on our derivation
strategy in section 4. Therefore, the operational semantics
is considered equivalent with its denotational semantics.

2. The Discrete Denotational Model
2.1. The Syntax for Verilog

The language discussed in this paper is a subset of Ver-
ilog. It contains the following categories of syntactic ele-
ments introduced in [2].

1. Sequential Process (Thread):
Su=PC | S; S | ifbthen SelseS
| whilebdo S | ¢S
where PC ranges over primitive commands.
PC ::= (z :=e) | SKIP | Chaos | STOP

and ¢ S denotes timing controlled statement. Here ¢
is a time control used for scheduling. It can be either time
delay #(A) or event control Q(n).

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

¢ = #(A) | Q(n), where

2. Parallel Process (Module):
P:=S | P|P
To accommodate the expansion laws of parallel construct,
the language is equipped with a hybrid control event hc:
he = Q(x ==) | @(g) | #(A)
gu=mnlgorg|gandg|gand-yg
and the guarded choice (hey Py)] ... [(hen Pp).

ni=vltolbo

2.2. Denotational Semantic Model

Verilog processes are allowed to share program vari-
ables. In order to deal with this shared-variable feature, we
describe the behaviour of a process in terms of a trace of
snapshots, which records the sequence of atomic actions in
which that process has engaged to some moment in time.
Our semantic model contains a variable ¢r to denote that
trace.

Function “last” yields the last snapshot of a trace.
tr1”try denotes the concatenation of trace ¢r; and try. Sup-
pose try is a prefix of tra, tro — try denotes the result of
subtracting those snapshots in ¢ry from ¢r,. The notation
try in tro indicates that ¢y is contained in trs.

A snapshot is used to specify the behaviour of an atomic
action, and expressed by a triple (¢, o, i) where:

(1) t indicates the time when the atomic action happens;

(2) o denotes the final values of program variables at the
termination of an atomic action;

(3) w is the control flag indicating which process is in con-
trol: p = 1 states the atomic action is engaged by the pro-
cess, whereas ¢ = 0 implies it is performed by the environ-
ment.

We select the components of a snapshot using the pro-
jections: w1 ((¢, o, w)) =qr t,

m((t, o,) =ar 0, w((t, 0, 1) =ar p
Once a Verilog process is activated, it continues its execu-
tion until the completion of an atomic action; namely ei-
ther it encounters a timing controlled statement, or it termi-
nates successfully. An atomic action usually consists of a
sequence of assignments as shown below.

Example 2.1: Consider the parallel program P||@ where
P=gy (z:=lLy:=z+Llz:=x+2)and Q =4 = :=2.
Three assignments of P form an atomic action, and their ex-
ecution is uninterrupted. The process () can only be started
at the beginning or at the end of the execution of P. a

To trace the accumulated change made by individual as-
signment within an atomic action we introduce a pair of
global variables ttr =4 (ttrl,ttr2), and identify an as-
signment as a binary relation over the variable ttr. On the
completion of an atomic action, its result will be added to
the trace.

Assignment guard @Q(x := e) is introduced in Verilog to
support parallel expansion laws. We regard Q(z := e) as

an atomic action. But its result is also stored in ¢¢r. In order
to distinguish an assignment guard from an assignment, we
assign a control flag with 0 to identify this case. The result
of the assignment guard will be added when its sequential
statement is encountered (not only time controls). O

We are now ready to represent the observation by a tuple

(ﬁmz,ﬁn;e,_)ir_,ﬁ), ttr, ttr', flag, flag")
where:
o fime and fime are the start point and the end point of a
time interval over which the observation is recorded. We
use d(time) to represent the length of the time interval.
d(time) =g45 (t_irﬁe_i ime)
o fr stands for the initial trace of a program over the in-
terval which is passed by its predecessor. # stands for the
final trace of a program over the interval.
7 — tr stands for the sequence of snapshots contributed by
the program itself and its environment during the interval.
e ttr and ttr' stand for the initial and final value of the
variable ttr which are used to store the contribution of an
atomic action over the interval.
e flag and flag' stand for the initial and final value of the
control flag. There are two cases to indicate the end of its
prior atomic action (“ttr = null” or “ttr # null A flag =
07).
We introduce a binary “chop” operator to describe the com-
posite behaviour of sequential composition.

Definition 2.2
PQ =g
i Y il d 1 ’
3t, s, tt, f o P[s/tr, t/time,tt/ttr', f]flag']

A Q[s/tr, t/fime, it/ttr, f/flag O

The “chop” operator is associative, and distributes over dis-

junction. It has I has its unit and false as its zero, where
I =4 §(time) =0 A w=1rA
ttr' = ttr A flag' = flag

Execution of a Verilog thread can never undo an atomic ac-
tion performed already. A formula P which satisfies a pro-
gram must therefore imply this fact, i.e., it has to meet the
healthiness condition.

(H1) P =P AR, where Rl =4 fr < ¥

A Verilog process may perform an infinite computation
and enter a divergent state. To distinguish its chaotic be-
haviour from the stable ones we introduce the variables
ok, ok’ : Bool into the semantic model, where ok = true
indicates the process has been started, and ok’ = true states
the process has become stable.

A timing controlled statement cannot start its execution be-
fore its guard is triggered. To distinguish its waiting be-
haviour from terminating one, we introduce another pair of
variables wait, wait’ : Bool. wait = true indicates that
the process starts in an intermediate state, and wait’ = true

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

means the process is waiting. The introduction of interme-

diate waiting state has implications for sequential composi-

tion “P;Q”: if) is asked to start in a waiting state of P,

it leaves the state unchanged, i.e., it satisfies the healthiness

condition.

(H2) Q = II Qwait > Q,

where II =4 true F (6(time) = 0) A (t_r> = W/\

(/\se{wait,ttr Jflag s' = S)

Pa@Q>R =45 (PANQ)V(-QAR)

P+ R =4 (okAP)= (ok' AR) a
Definition 2.3: Let P and (Q be formulae. Define
P; Q=4

Jw, 0 e (Plw/wait', 0/ok'| " Qw/wait,o/ok]) O

Definition 2.4: A formula is called a healthy formula if it

has the following form.
H(QFW <wait' >T)

where H(X) = II <wait> (X A R1) O
Theorem 2.5: H(P) satisfies healthiness condition (H1)
and (H2). O

Theorem 2.6: If D;, D, are healthy formulae, so are
Dl\/DQ,Dl <]bl>D2 andD1) DQ,

where
if =Q1 = Q1 A R1 and =Q2 = Q2 A R1, then
H(Ql F W1 < wait’ > Tl) H H(QQ [WQ < wait’ > TQ)

= H(=(=Q1; R1) A~(T1 5 —Q2)
(W1 V (T1 3 W2)) < wait' > (T1 ; TQ)) O
The denotational semantics of a process P is described
as: H(=Pyiy b Pyair Qwait' > Piey)

where, Py;y, Pyait and Py, are the divergent, waiting and
terminating behaviour of P respectively.

3. Denotational Derivation for Operational Se-
mantics

3.1. Operational Structure, Transitional Condition
and Phase Semantics

There are six types of transition for Verilog based on con-
figurations. In order to derive Verilog’s operational seman-
tics from its denotational semantics we define a transitional
condition and a phase semantics for each type of transition.
A configuration usually consists of four components (or five
in some cases):

(1) a program text P representing the rest of the program
that remains to be executed;

(2) a data state o (the second element of a configuration)
denoting the initial data state of an atomic action;

(3) another data state ¢’ (the third element) representing the
current data state during the execution of an atomic action
(¢! = () represents the previous atomic action ends and the

new atomic action has not been scheduled);

(4) a control flag k (the fourth element) indicating whether
or not the program P is activated: k£ = 1 says that P is
scheduled to execute, whereas k = 0 implies that P is wait-
ing to be activated;

(5) a thread number ¢ (in some configurations) denoting the
i-th thread of process P is being executed (i.e., this thread
obtains the control flag).

The relationship between a transition and the variables in
the denotational model can be described by the following
diagram of an example transition.

mo(last(¥r)) ttr2 flag

1]

<P, o, o, 0>

7r2(last(t_r>)) ttr2' flag'

I 1]

<o 0>
2%, <P, o, 0, 0>

Let O(a1, a2, as, ay) stands for the observation of ¢tr and
flag.
O(an, aa, a3,) =gr ttr = aq Attr' = as A
flag = az A flag' = ay
We use “ttr = notnull” to indicate “ttr # null”.

The transition rules can be grouped into the following
types [7]. We define a transitional condition Cond; ; and
its corresponding phase semantics for each type of transi-
tion. Our map from denotational semantics to operational
semantics is based on the phase semantics. Here, Cond, ;
stands for the transitional condition of the j-th transition of
type T;.

e Instantaneous transition

T;: The ¢-th thread of process P can perform an instanta-
neous action, and P enters the instantaneous section by its
i-th thread being activated.

< Po,0,0> ——>< P,o,0,1,i >, i€{1,2}
Condm =df

T =t A O(null, (o (last(37)), w2 (last(£7))), 0, 1)

< P,o,0',1> — =< Po,o',1,i>, i€{l,2}
Cond, » =4 =1t A O(notnull, ttr,1,1)

T5: Within the instantaneous section, the ¢-th thread of the
process P performs a transition, and remains in the section
or terminates. This transition assigns the successor of P an
active status.
< Pyog,0,1,i> — > < P'og,0',1,i >, i€ {1,2}
< Pyog,0,1,i> — =< P',o9,0',1 >, i€ {1,2}

For a specific program P, ¢’ should be of the form f(o).
The two transitional conditions are the same.

Cond,; =4 T = tr A O(notnull, (ttrl, f(tr2)),1,1)

T5: Within the instantaneous section, the i-th thread of a
process may leave the instantaneous section. If the process

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

is breakable, it can also leave the instantaneous section.
< Pyog,0',1,i > —— < P,og,0',0>, i€{1,2}
< P,og,0',1> — =< P,og,0',0>

The two transitional conditions are the same.

Conds; =4 T =tr A O(notnull, ttr,1,0)

T,4: A transition represents that the program executes an
assignment guard (i.e., assignment guard is regarded as an
atomic action).

<Po,0,0> ——< P oo',0>
For a specific process P, ¢’ should be of the form f (o).

Cond4,1 =df
= tr A O(null, (2 (last(3r)), f (2 (last(¥r)))), 0, 0)
e Triggered transition

T5: (1) A transition can be triggered by its sequential pre-
decessor. This kind of transition is called the self-triggered
transition.
<o 6>
< Poo,0> 2%, <P o,0,0>
. . <o ,0> ..

Here, ¢ in notation =5, represents the condition
which triggers the transition. It has the form ¢(c, ¢') based
on a pair of states < o,0’ >. If there is no this kind of
condition, it can be understood as true. If o and ¢’ are the
same, o' will not be attached to the end of the trace.

Conds 1 =45 c(ttrl, ttr2) A O(notnull, null,0,0) A
(#F = Ir < m(last(3r)) = ttr2 >

= tr~ < (fime, ttr2,1) >)
(2) A transition can be triggered by its parallel partner.

<o 0>

<Po,0,0> —=5,. <P,o',0,0>

A process can also records the contribution of its envi-
ronment’s atomic action. But the control flag i in the snap-
shotis 0. If o and ¢’ are the same, the environment will not
attach ¢’ to the end of the trace. Therefore, the process’s
trace remains unchanged (i.e., = rr)in this case.

COIld5’2 =df
O(null,null, 0, 0) A c(ms (last(¥r)), m (last (TF)))

- ﬁl(ﬁ)—m:ﬁmzf_
A (tr_rfv< (@ T -0

The above five types of transitions have the instanta-
neous feature (the program itself or its environment). The
corresponding phase semantics of each transition can be ex-
pressed as Inst(Cond; ;) where Cond; j can be the above
nine transitional conditions.

Inst(X) =4 H(true F —wait’ A §(time) =0A X))
“§(time) = 0” indicates those transitions consume zero
time.

¢ Timing advancing transition

Te: < P,o,0,0 > —1—><P’,a,@,0>

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

Conds,1 =af =t A O(null,null, 0,0)

If process P cannot do any other transitions at the mo-
ment, time will advance. We regard the unit of time advanc-
ing is 1. During this period, there are no atomic actions con-
tributed by the process P itself and its environment. Hence,
time advancing keeps the trace unchanged. Its phase seman-
tics is:
phase6 =4 H(true - Condg 1 A (§(time) < 1

Jwait' > §(time) = 1))

3.2. From Denotational Semantics to Operational
Semantics

It is the purpose of an operational semantics to define the
relationship between a program and its allowed execution.
For this we need a clear definition of transition for Verilog.
Furthermore it is the major aim of this paper to show it is
possible to derive the operational semantics for Verilog in
such a way as to guarantee its equivalence with the denota-
tional semantics.

In order to derive the operational semantics from the de-
notational semantics, the notation of a configuration con-
dition is introduced. It links the configuration state with a
denotational condition.

For notational simplicity, we will use < P, a > to rep-
resent a configuration in later discussion and p; (< P, >)
to denote the i-th component of < P, a >.

Definition 3.1 (Configuration Condition)
Condition(< P, >) =g45
(ttr = null < ps(< Pya >) = 0 > tir # null)
A flag = ps(< P,a >) O

Let C(au, a2) =gf ttr = a1 A flag = as. We again use
“ttr = notnull” to indicate “ttr # null”. C(a1,az) can
be used to stand for the configuration condition. For exam-
ple, Condition(< P,o,0',0>) = C(notnull,0)

Example 3.2: Assignment z := e under state < z :=
e, a,0, 0 > can be scheduled at once and then takes an in-
stantaneous transition. The environment can also be sched-
uled to execute first. The order in which x := e and its
environment is selected is arbitrary, i.e.,
<z:=e,0,0,0> —=><z:i=e 0,0 1,1> (1

)
<zi=e, 0,0,0> 205 <z:=e 0, 0,0> (2)

This means < « := e,0,0,1,1 > and < z :=
e, o', 0,0 > are the two execution branches of the con-
figuration < z := e, o,), 0 >. On the other hand, from
the denotational view, we can prove:

Inst(Cond;1); x:=e = C(null,0) Az :=e (3)

Inst(Conds2); x:=e = C(null,0) Az :=e (4)
Here Inst(Cond, 1) and Inst(Conds ») are the phase se-
mantics of the above two transitions. C(null,0) indicates
the denotational semantics := e is under the configura-

YF]',F.

COMPUTER
SOCIETY

tion condition ttr = null A flag = 0. Therefore logical
formulae (3) and (4) are consistent with transitions (1) and
(2) respectively. This leads to the definition of our transition
strategy. |

Definition 3.3 (From Denotational Semantics to Opera-
tional Semantics)

B

<Pa> ——=<P,d>

=4 sem; P' = Condition(< P,a >)AP

where, sem is the phase semantics of transition < P, a >

LN < Pla >. 8 _scan be of the transition form
<o,0'> 1

-5 ==, o —= m|

Here, “=" represents logical implication. P and P’ in the
first line of the definition stand for the syntax, whereas P
and P’ in the second line stand for the denotational seman-
tics. We regard the denotational semantics of the empty pro-
cess € as II.

This definition allows the transition system of Verilog
to be derived as theorems, rather than being presented as
postulates; they can be strictly proved from the denotational
semantics. Therefore the derived operational semantics is
equivalent to or consistent with the denotational semantics.

Our main goal is to derive the operational semantics in
[7]. In this sense the operational semantics of Verilog in [7]
is consistent with our denotational semantics. On the other
hand there may be more derived transition rules than the
rules in [7]. In order to let the derived transition rules work
properly, we add the following restrictions:

e Transition type T and T cannot be used for STOP,
Q(g), #n, Q(x = e) and guarded choice.

o The first rule of transition type T2 (or Tg) is only for
those parallel processes (except Chaos), whereas the
second rule of T is only for those processes that have
no parallel structure outside.

e Transition type Tg and the second rule of T, cannot
be used for Chaos.

4. Deriving Operational Semantics for Verilog
Statements by Proof

In this section we will derive the operational semantics
for Verilog statements by strict proof. Therefore, our de-
rived operational semantics is equivalent to or consistent
with its denotational semantics [9].

4.1. Primitive Statements

SKIP first adds the result of its previous atomic action
if the result has not been added and then behaves in two dif-
ferent ways according to its role in atomic action:

(1) When it is the first statement of an atomic action, its ac-
tivation can be held by the environment for a while (in fact

zero time units!), and afterwards it assigns the last snapshot
of the trace to ttr.
(2) Otherwise, it terminates immediately.

Its denotational semantics was defined in [9].
SKIP = flash < (ttr # null A flag = 0) > I
; (hold(0) ; init) < ttr = null > IT

where:
flash =df

ttr' = null A flag' :0/\(52 =t
Inst | <(ttr = null v 7r2(last(ﬁ5) = ttr2)>

=< (éz_'mE,TtTQ, 1) >)

init =q5 Inst(7= A

O (null, (s (last(3r)), w2 (last ($7))),0,1))
hold(n) =df
H(true F idle A ttr' = ttr A flag' = flag A

(0 <n<wait' >0 =n)),
idle =4f 7T3(E") - We 0* A incr(m(ﬁ) - W,
incr(s) =qp V <t1,t2 > inse (ty —t1) € Nat
Nat is the set containing all the non-negative integers.
§ is the abbreviation of §(time), which is fime — fime. O
Theorem 4.1
T:: <SKIP,0,0,0> — — < SKIP,0,0,1,1 >

< SKIP,0,d,1> — =< SKIP,0,d¢,1,1>

T,: <SKIP,v,d,1,1> ——<e,0,0,1>

Ts: <SKIP,s,0',0 > <275 < SKIP,o',0,0 >

< SKIP,0,0,0 > “2'%% < SKIP,o",0,0 >
Proof:

Here T; ; indicates the j-th transition of Transi-
tion T;. We only give the proof of T’ 1. Others are similar.

Inst(Conds,) ; SKIP
{Def of SKIP and Cond; ; }
= Inst(Conds; 1) ; hold(0) ; init
{Def of flash}
= C(notnull,0) A (flash ; hold(0) ; init)
{Def of SKIP}
= C(notnull,0) A SKIP

We can also prove that SKIP cannot do transitions of type
T3, T4 and T(;. O

The execution of x := e assigns the value of e to x. Like
the treatment of SKIP, we distinguish the case of z := e
is the first statement of atomic action from the other cases.

z:=e =gy SKIP ; assign(z,e)
where
assign(z,e) =gr
Inst(ﬁ“) = tr Attrl' = ttrl A ttr2' = ttr2[e/z]
A flag' = flag)

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

ttr2[e/x] is the same as ttr2 except mapping z to e.

Theorem 4.2

Ti: <z:=e,0,0,0> — > <z:=e¢,0,0,1,1>
<z:=e,0,0,1> ——><r:=e00,1,1>

Ty <z:=e,0,0,1,1> ——=<¢,0,0e(c")/x],1 >

<o 0>
-5 <z:=¢,0,0,0>
<o 6>
- <z:=e,0,0,0>

Ts: <z:=e,0,0,0>
<z:=e,00,0>

Proof
We first prove T and T'5 based on the result of SKIP.

Inst(Cond, ;) ; x:=e
{Def of x:=e}
= Inst(Cond, ;) ; SKIP ; assign(z,e)

{Transition of SKIP }

= (Condition(left) A SKIP) ; assign(z,e)
{PL}

= Condition(left) A (SKIP ; assign(z,e))
{Def of x:=e}
= Condition(left) Nz :=e¢ m|

“left” means the left configuration of a transition. The
prooof of T is similar to the proof of Ty for SKIP [11].

4.2. Timing Control

In Verilog the timing control events are introduced to
synchronize the execution of parallel process. There are two
kinds of events. One is the guard event; the other is the time
delay. The guard event is denoted by @(g). A primitive
guard g can be of the following forms:

e 1 v waits for an increase of the value of v.
e | v waits for a decrease of the value of v.
e v waits for a change of v.

We introduce a predicate fire(g)(co, ') to indicate the tran-
sition from state o to state o’ can awake the guard @Q(g).

fire(tv)(o,0") =ar o(v) <0'(v)

fire(V v)(0,0") =ar o (v) > 0'(v)

fire(v)(o,0") =ar o(v) # 0'(v)
The event guard @(g) can be immediately fired after it is
scheduled to executed. In this case, it is actually triggered
by the execution of its priori atomic action, and can be spec-
ified by seltrig(g).

Another case is the guard Q(g) waits to be fired by its
environment, its idle behaviour is described by await(g).
When the guard is eventually triggered, its behaviour is
modelled by trig(g).

Q(g) =qr selftrig(g) V (await(g); trig(g))
where

sel ftrig(g) =qr H(true F ttr # null A
fire(g)(ttrl, ttr2)) A II; flash

The definition of await(g) and trig(g) can be found in [11].

Theorem 4.3
Ts: < Q(g),0,d,1> ——<Q(g),0,0',0>
Ts: <@(g),0,0,0> 2% <e0,0,0>
< @(g),0,0,0 > <5’é—?fire(g) <e0',0,0>
< Q(g),0,d,0 > <5’”I—?ﬁfm(g) < Q(g),0',0,0 >
<o 0>

<Q(g),0,0,0 >
Ts: < Q(g),0,0,0 > < Q(g),0,0,0 >

Proof: Here we give the proof of the first rule of transition
type T'5. Other proofs can be found in [11]. Let

attachl =4 T=tr<am (last(rrj) = ttr2 >
= tr~ < (fime, ttr1,1) >
Inst(Conds) ; II

— = —fire(g) < @(g),o‘l,@,o >

{Def of Conds ;, Th 2.6}
= Inst(fire(g)(tt1,ttr2)A
O(notnull,null,0,0) A attachl)

{PL}
= C(notnull,0) A (seltrig(g))
{Def of @(g)}
= C(notnull,0) A (Q(g))
O

4.3. Iteration

The denotational semantics of Verilog iteration construct
is defined in the same way as its counterpart in the conven-
tional programming languages.

whilebdo P =4 prrX e ¢(X),
where:
/LHFX.¢(X) =df |—|{X | X = ¢(X), X e HF},
&(X) =4r SKIP ; ((P; X) < b(ttr2) > II),
HF is the set of all healthy formulae.
Let b x P stand for while b do P.
Theorem 4.4
Ty: <bxP,0,0,0> ——=<bxPo,0,1,1>
<bxPo,0',1> ——=<bxPo,o,1,1>
T2: <bxPo,0',1,1> ——<P;bxPo,o,1>
if b(o")
<bxPo,o',1,1> ——=<e,0,0,1>
if —rb(a’)

Ts: <b*xP,o,0,0> it e <bxP,o',0,0>

<bxPo,0,0> 2% <bxPo,0,0>
Proof: Below is the proof of transition Tq and T5. The
proof for T can be found in [11]. Let sem stand for the
phase semantics for transition T'¢ or T'.
The following two laws about pugpX e ¢(X) will be
employed later.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

P(uarX @ 9(X)) = parX o p(X) (1)
If F = ¢(F), then F = ugrX o ¢(X) (2)
For any healthy formula X which satisfies X = ¢(Xp),

sem ; Xo {Xo = ¢(Xo)}
= sem; SKIP ; (P; Xo) < b(ttr2) > IT
{Transition of SKIP }
= (Condition(left)ASKIP) ; (P; Xo)<1b(ttr2)r>1II
(X0 = pmrX o (X))
= Condition(left)A
(SKIP ; (P; ugrX @ ¢(X)) < b(ttr2) > IT)
{Formula (1)}
= Condition(left) A (uprX o ¢(X))

sem : prrX o H(X) {Def of uprX @ p(X)}
= sem; N{X | X=>¢X),X € HF}
{PL}
= M{sem; X | X = ¢(X),X € HF}
{Above result, PL}
= Condition(left) A (ugrX o (X))
O

4.4. Parallel

In order to derive the transition rules for parallel, we first
give an overview of the denotational semantics for parallel
process.

The trace of parallel construct is formed by interleaving
of atomic actions performed by its components. Let F' and
G be formulae of variables W,ﬁ), ttr, ttr', flag and flag',
which do not contain ok, ok’, wait and wait’. The merge
of F and G can be expressed by F' ® G [9, 11].

The following lemmas about ® will be employed in the
later proof.

Lemmad4.5: If P, = (ttr = null) A (ttr' = null)
and P, = (ttr = null) A (ttr' = null),

then ((PiAlen(T =) =nAd=m);Q:)®
((PyAlen(TF =Ty =nA6=m); Q)
= ((PAlen(BF -y =nAd=m)®
(PyAlen(TF —try=nAd=m))
; (Q1® Q) 0
Lemma 4.6
It P = my(T — #r) € 0% A (ttr = null) A (tr' = null),
then (P; Q1) ® (P; Q2) = P; (Q1®Q2) o
Lemma4.7: If P, = P and Q)1 = Qo,
then (P, ® Q1) = (P ® Q2) 0

The parallel construct P || @ runs P and @ in parallel.
P || Q =ar attach ; par(P; flash, @Q; flash)

where attach behaves the same as flash except it keeps the
value of ttr’ unchanged [9, 11].

par(P, Q) is defined in terms of ® in [9, 11], and its be-

haviour is determined by that of its components in the fol-
lowing ways:
e It stays at a waiting state if either component does so;
e It terminates when both components complete their ex-
ecution;
o It behaves chaotically when either component is diver-
gent.

Next we discuss the transition rules for parallel construct.

Theorem 4.8 (Program refinement)

P = Q iff (Paiv = Qaiv) N (Pwait = (Qaiv V Quait))
A (Pter = (Qdiv \ Qter)) O

This theorem is useful in deriving the transition rules for

parallel construct.

Definition 4.9 (Consecutive instantaneous action)

Let P be a program, and o« =< a, §), 0 > or < 7y, 7, 1 >.

< P,a> —"— < P',a > if there exists a finite sequence
of configurations {D; | 0 < i < n} such that

(1) Dy=<P,a>, (2) D; ——D;qifor0<i<mn,
(3) pa(D;)=1forl1<i<n, (4) D,=<@Q,a' >0
Next we introduce = to specify an atomic action.

Definition 4.10 (Atomic action)

Let D =< P,a >wherea =<o,0,0 >0or< o, 0, 1>.
D =, <P,o,0,0>

=4 3P0, 08D =< Plo,0,0>A

T Q00,0 > O

We can also generalize the transitional condition for an

atomic action.

Theorem 4.11 If < P,0,0,0 > —. < P',¢',0,0 >,

where ¢/ = f(0)

then Inst(atomic'(c)); P' = C(null,0) A P

where atomic'(c) =45

7 = tr A O(null, (2 (last(3r), f(m(last(¥r)))), 0,0)
H COIld571

atomic(c) =qr atomic (c) A 6(time) =0

<P,o,0,0>

Cond; ; contains the condition c in its definition. i

Theorem 4.12
If <P,o,0,0> =, <P ,0,0,0>,
and < Q,0,0,0 > <ﬁ‘i>>c2 <Q',0,0,0>
then (1) atomic(cl Ac2); (P'|| Q) aiw =
C(null, 0) A (P || Q)div
2) atomic(cl Ac2); (P || Q") wait =
Cnull,0) A ((P || Q)aiv V (P || Q)uwait)
3) atomic(cl Ac2); (P Q) ter =
Cnull,0) A ((P || Qaiv V (P Q)ter) D
The detailed proof can be found in [11].
Theorem 4.13

If <Po,0,0> =, <P,o,0,0> and

YF]',F.

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

COMPUTER
SOCIETY

<o,0'>
<Q,0,0,0> “27°5 ., <Q',¢',0,0 >

then Inst(atomic' (c1 Ae2)); (P || Q") =
C(null,0) A (P]| Q)
Proof: from theorem 4.12, 4.8 and 2.6. a
Theorem 4.14
It <Po0,0> 275, <P.o',0,0> and
<Q,0,0,0> 275 <Q0',0,0 >
then Inst(Conds»); (P’ || Q') = C(null,0)A(P | Q)
Here Cond;s > contains the condition c1 A c2. O
Theorem 4.15
If <Po,0,0>——<P,o00> and
<Q,0,0,0 > RN Q',o,0,0 >
then phase6; (P'|| Q") = C(null,0)A (P || Q) O
Theorem 4.16 (Transition system for parallel process)
(HIf <Po,0,0> = <P,o,0,0>and

<Q7070,0> <'£0'_)>C2 <Ql,al70,0>’
then<-P|| Q7070,0> = clAc2 < P || Qlagl,®70>
Q) If < P,0,0,0> “275,, <P'o',0,0>and

<Q,0,0,0> 205, <Q'0',0,0>

then < P || Q,0,0,0 > “275 ;i he0 < P' || Q',0",0,0 >

3 If <Po,B,0> ——<P, o0,0>and
<Q,0,0,0> ——=<Q",0,0,0>

then< P || Q,0,0,0> — =< P'||Q",0,0,0 >

Proof: directly from theorem 4.13, 4.14 and 4.15. O

Transition rules of Theorem 4.16(2)(3) are consistent with
the parallel rules T'5, Tg in [7]. Our proved rule of Theo-
rem 4.16(1) is the universal rule of Ty, T2, T3, T4. We
can extend this general rule to the detailed rules of T, T3,
T3, T4 in [7] according to the simulation-based scheduler.
Then our whole transition system can work properly.

For other statements of Verilog, the derived transition
rules and their proofs are presented in [11].

5. Conclusion

The main contribution of our work is to derive the opera-
tional semantics for a subset of Verilog from its denotational
semantics. Thus, our operational semantics presented here
is equivalent to its denotational semantics. We provide a
discrete denotational model and design a refinement calcu-
lus for it. Our approach is new. We define a transitional
condition and phase semantics for each type transition. A
transition can be derived if the sequential composition of the
phase semantics and the denotational semantics of the pro-
cess in the transition’s right configuration implies the de-
notational semantics of the process in the transition’s left
configuration.

For the future, we are continuing to explore unifying the-
ories of Verilog. The completeness of the derived opera-
tional semantics for Verilog is another interesting topic for
study.

References

[1] J. P. Bowen, He Jifeng and Xu Qiwen. An Animatable
Operational Semantics of the VERILOG Hardware De-
scription Language. Proc. ICFEM2000: 3rd IEEE In-
ternational Conference on Formal Engineering Meth-
ods, IEEE Computer Society Press, pp. 199-207, York,
UK, September 2000.

[2] M. J. C. Gordon. The Semantic Challenge of Verilog
HDL. Proc. Tenth Annual IEEE Symposium on Logic
in Computer Science, IEEE Computer Society Press,
pp- 136-145, June 1995.

[3] He Jifeng and Xu Qiwen. An Operational Seman-
tics of a Simulator Algorithm. Technical Report 204,
UNU/IST, P.O. Box 3058, Macau, 2000.

[4] He Jifeng and Zhu Huibiao. Formalising Verilog. Proc.
IEEE International Conference on Electronics, Circuits
and Systems, IEEE Computer Society Press, pp. 412—
415, Lebanon, December 2000.

[5] C. A.R. Hoare and He Jifeng. Unifying Theories of Pro-
gramming. Prentice Hall International Series in Com-
puter Science, 1998.

[6] IEEE Standard Hardware Description Language based
on the Verilog Hardware Description Language. IEEE
Standard 1364-1995, 1995.

[7]1 Li Yongjian and He Jifeng. Formalising VERILOG:
Operational Semantics and Bisimulation. Technical Re-
port 217, UNU/IIST, P.O. Box 3058, Macau, November
2000.

[8] Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A
Calculus of Durations. Information Processing Letters,
40(5):269-276, 1991.

[9] Zhu Huibiao and He Jifeng. A Semantics of Verilog us-
ing Duration Calculus. Proc. International Conference
on Software: Theory and Practice, pp. 421-432, Bei-
jing, China, August 2000.

[10] Zhu Huibiao, J. P. Bowen and He Jifeng. From Opera-
tional Semantics to Denotational Semantics for Verilog.
Proc. CHARME 2001: 11th Advanced Research Work-
ing Conference on Correct Hardware Design and Veri-
fication Methods, Livingston, Scotland, 4—7 September
2001. Springer-Verlag, LNCS 2144, pp. 449-464,2001.

[11] Zhu Huibiao, J. P. Bowen and He Jifeng. Deriving
Operational Semantics from Denotational Semantics
for Verilog. Technical Report SBU-CISM-01-16, South
Bank University, London, UK, June 2001.

YF]',F.

Proceedings of the Eighth Asia-Pacific Software Engineering Conference (APSEC’01)
1530-1362/01 $17.00 © 2001 IEEE

COMPUTER
SOCIETY

