

Formally Analysed Dynamic Synthesis of Hardware

Kong Woei Susanto and Tom Melham

Department of Computing Science

University of Glasgow

{susanto,tfm}@dcs.gla.ac.uk

http://www.dcs.gla.ac.uk/~tfm/dynhw

Abstract. Dynamic hardware reconfiguration based on run-time system specialization is viable
with Xilinx XC6200 series FPGAs. The research challenge for formal verification is to help
ensure the correctness of dynamically generated hardware. In this paper, the approach is to verify
a specialization synthesis algorithm used to reconfigure FPGA designs. The verification
approach is based on a deep embedding of a language for netlists and the relational hardware
modeling style.

1 Introduction

Most micro-electronic circuit design is done as ASIC design. The design is validated
extensively, either by simulation or by formal verification methods, before it is manu-
factured. The production of the design as a chip will take several months before the
designer can test the hardware itself. If the system fails to satisfy the functional specifi-
cation at the testing stage, the designers must redesign the circuit and redo the whole
validation, production, and test cycle.

The flexibility of implementing a design in a short period has made Field Programma-
ble Gate Arrays (FPGAs) popular for rapid system prototyping. The FPGA is an array
of generic function cells configured by assigning configuration bits to specify each
cell’s functionality and interconnection with other cells. The fabrication phase of the
ASIC design cycle is replaced by configuration of an FPGA chip, which takes at most a
few seconds. Furthermore, FPGAs make it possible to implement designs for small
production markets.

Most reconfigurable hardware designs use the reconfigurable capability of FPGAs only
by swapping in pre-compiled circuits from a library. Research at the University of
Glasgow wants to exploit more advanced capabilities of FPGAs to tune circuits to have
better performance at run time. The run-time reconfiguration needed for this is viable
now with the Xilinx XC6200 series FPGAs, though future generations of FPGA chips
are likely to offer similar capabilities. The XC6200 chip has SRAM reconfigurable
cells, so that changing the implemented circuit’s functionality is as simple as assigning
to a variable in a software system.

Our scheme for run-time synthesis is designed for circuits which have both static and
dynamic inputs. Imagine a decryption circuit which has two inputs: the key and the data
to be decrypted. Suppose the key changes much less frequently than the data. When the
system gets the key, the decryption circuit can profitably be specialized for that specific
key. This is done by simplifying components using knowledge of the key value, and
reconfiguring the FPGA accordingly. The system will then have a shorter critical path,
and so will have a faster decryption process. The key value is known only at run-time,
so the system can be specialized only at run-time as well. Our specialization method is
adapted from the existing specialization ideas of run-time partial evaluation for soft-
ware [7].

To ensure the correctness of the system, we can no longer rely on simulation based
techniques, which take a long time to execute. Specialization occurs at run-time, and
since the specialized circuitry is used immediately, there is certainly no time for simula-
tion. Instead, formal verification will be used to establish the correctness of the special-
ization process itself. Our verification method is based on formal specification and
proof in higher order logic.

The rest of this paper is structured as follows. A brief sketch of partial evaluation tech-
niques for hardware is given in section 2. In section 3, the design flow for our use of
FPGAs and the verification approach for this design flow are described. Section 4
explains our verification methodology. In section 5, the FPGA device model used and
the embedding of the HDL language semantics are presented. Finally, our conclusions
and some ideas for future work are given in section 6.

2 On-line Dynamic Hardware Synthesis

Partial Evaluation is a common technique in software compilations and executions [7].
The method reduces time resource requirements by exploiting the nature of some sys-
tem inputs which are static for a long period relative to other inputs. Consider a func-

tion f that operates on some data. Suppose the input data can be divided into a static
(known data) input s and a dynamic (unknown data) input d. A partial evaluator is a
function PE that is applied to the (source code for) the function f and the data value s to
yield a residual function fs (eq 1). Moreover, fs has the same action on the dynamic
data d as the generic function f (eq 2). As the result of partial evaluation, fs runs much
faster for each d than the original function f.

 PE (f , s) = fs (eq 1)
 [fs] (d) = [f] (s , d) (eq 2)

The basis of our work is the observation that partial evaluation can also be applied to

circuit descriptions. Partial evaluation for hardware is done essentially by propagating
known input values and specializing the corresponding gates. Similar techniques are
known as data unfolding or constant propagation. The idea behind our work is to apply
this technique to circuits developed for FPGAs, and to do the specialization at run-time.
The specialization occurs by dynamically modifying the configuration data of Xilinx
XC6200 chips. Hardware is different than software in the sense that hardware is nor-
mally static rather than dynamic. For example, the typical case of dynamic behavior
under partial evaluation in software is unfolding of function calls to generate more pro-
gram text. By contrast, a hardware circuit is always already fixed. Partial evaluation
merely specializes the hardware to make some of the circuit disappear, rather than gen-
erating new circuitry.

To illustrate partial evaluation, consider the following full-adder, described at the gate
level by a Lava [11] function:

 type FullAdder = ((bit,bit),bit) -> Out (bit,bit)
 fa :: FullAdder
 fa ((a,b), carryIn)
 = do partSum <- at (0,0) $ xor2 (a,b)
 sumOut <- at (1,0) $ xor2 (partSum, carryIn)
 carryOut <- at (1,1) $ mux2 (partSum, (a, carryIn))
 return (carryOut, sumOut)

The ‘at (x,y)’ and ‘$’ notations mean that the gate written after the ‘$’ is placed on the
chip at a relative address indicated by the (x,y) coordinates. Suppose the first input a of
the full-adder is known as a static input that will remain the same for many different
values on b. The circuit can then be specialized and simplified using this value of a. For
example, if the value of a is known to be zero, the XOR gate can be simplified to a
buffer. The input signal b can directly be propagated to the next component. The overall
system is then simplified to a two input function with two components:

 specialised_fa (b, carryIn)
 = do sumOut <- at (1,0) $ xor2 (b, carryIn)
 carryOut <- at (1,1) $ mux2 (b, (0, carryIn))
 return (carryOut, sumOut)

Figure 1 shows the circuit diagram of both full-adders, the original Lava function
description and the specialized one. The specialized full-adder has less delay, because it
has one less gate along the critical path.

 (a) (b)
Figure 1. Circuit diagram of full-adder (a) and specialized full-adder (b).

Another example of the idea is illustrated by the 5 by 6 bit parallel multiplier shown in
figure 2. The dynamic input registers represented by a0 upto a5 come from the top of
the figure, the static input registers represented by b0 upto b4 come from the right hand
of the figure, and the output registers is on the bottom of the figure represented by s0
upto s9.

Figure 2. The shift add 5 by 6 multiplier circuit

Assume at run time the input b is going to have the known value of 6 for many itera-
tions. The circuits can then be specialized and reduced to have only one addition opera-
tion and several long wires. The b register can disappear entirely (figure 3). The
resulting circuit, then, can be operated at a higher speed than the original.

a
b

cIn
sOut

cOut

a

cIn
sOut

cOut’0’

FDC FDC
a0

b0

a1

b1

FDCFDCFDCFDC

AND AND ANDANDAND AND

ANDANDANDANDANDAND

s0

XOR

XORMUX

XOR

XORMUX

XOR

XORMUX

XOR

XORMUX
b2

b3

XORAND

ANDANDANDANDANDAND

ANDANDANDANDANDAND XOR

XORMUX

XOR

XORMUX

XOR

XORMUX XORAND

XOR

XORMUX

XOR

XORMUX

XOR

XORMUX

XOR

XORMUX XORAND

XOR

XORMUX

ANDANDANDANDANDAND XOR

XORMUX

XOR

XORMUX

XOR

XORMUX XORAND

XOR

XORMUX

b4

s1s2s3s4s5s6s7s8s9

a2a3a4a5

FDC

FDC

FDC

FDC

FDC

Figure 3. The specialized 5 by 6 multiplier circuit with the b value of 6

The essential requirement for on-line specialization is that the performance gained by
specializing must, over the whole input data, offset the cost of doing the specialization.
To illustrate the idea, consider a data stream consisting of some specialization parame-
ters followed by n data items. There are 5 timing parameters to be considered for the
specialized system and generic system schemes. For the specialization scheme, we
have 3 parameters: the time to synthesize hardware for specialization (Ts), the program-
ming time to reconfigure the FPGA (Tp), and the cycle time to process the data using
the specialized circuit (Tc). The generic system has two parameters: the time to load the
specialization parameter (Tk), and the cycle time to process the data using the generic
circuit (Tg). The time needed to complete the whole process for both the specialized
and generic circuit is presented in equations 3 and 4. A better performance can be
achieved either when the number n of data items to be processed is sufficiently large so
that the time needed to specialized the circuit (Ts+Tp) becomes relatively small or
when the cost of specialization (Ts+Tp) over the whole input data is more efficient than
the overall cost by the generic circuit.

 Specialized Circuit = Ts + Tp + n Tc (eq 3)
 Generic circuit = Tk + n Tg (eq 4)

3 Design Flow and Run-time Partial Evaluation

The Xilinx XC6200 series FPGAs have an SRAM reconfiguration facility which
allows them to be dynamically reconfigured in a very short time. The most important
feature of this chip is that each cell can be configured individually without having to

FDC FDC
a0

b0 = 0

a1

b1 = 1

FDCFDCFDCFDC

s0

b2 = 1

b3 = 0

XOR

XORMUX

XOR

XORMUX

XOR

XORMUX XORAND

XOR

XORMUX

b4 = 0

s1s2s3s4s5s6s7s8s9

a2a3a4a5

GND

GNDGND

reconfigure the entire chip. This means that it is possible to reconfigure part of the chip
while in other parts of the chip some systems are still running.

A notable feature of FPGA design generally is that placement takes an important role
owing to the limited connections between cells available on FPGA chips. Most FPGA
system designers therefore already have some kind of placement patterns in mind for
their designs. Unfortunately, most Hardware Description Languages (HDLs) do not
accommodate this important information. The Department of Computing Science at
Glasgow and the University of Chalmers therefore developed an HDL called Lava
which incorporates this information [11]. The Lava language is developed as a library
in the Haskell programming language; Haskell itself is a pure functional programming
language [6].

Figure 4. The design flows for the partial evaluation scheme

The overall circuit development environment (design flow) for the partial evaluation
scheme is shown in figure 4. The circuit is developed using the Lava programming lan-
guage. The Lava hardware description is then synthesized to produced a netlist format
(EDIF) of the circuit. By using the Xact tools from Xilinx, the circuit at the netlist level
is then placed and routed. This process produces a CAL (Configurable Array Logic)
description, which consists of the configuration bits of each individual cell in the chip.
All these design processes are done off-line. The on-line / run-time reconfiguration part
takes place after the circuit is already placed in the chip and is in operation.

In the run-time part of the process, the circuit description in the form of a CAL file is
downloaded into the chip’s SRAM. At this stage, the chip is ready to perform the sys-
tem’s functionality. When the static input is detected, the partial evaluation program
analyses the static value and specializes the circuit already placed on the chip. It imme-
diately reconfigures the circuit by generating new configuration data which specializes

Lava EDIF

CAL

XACT

Lava
Description

PECAL *

the current circuit on the FPGA chip. As the result, the circuit on the chip will be sim-
pler and faster than the generic one. Preliminary results of an experiment for run-time
specialization based on a simple constant propagation scheme for partial evaluation are
presented in [8].

4 Formal Hardware Verification Approach

The correctness of the overall system depends on the correct functional behavior of the
specialized circuit with respect to its generic circuit source for given static values. Nor-
mally, the correctness of such a system can be investigated by simulation or by formal
verification using equivalence checking or model checking. But in our highly dynamic
setting, we may generate hardware and use it for only a few seconds before discarding
it. Clearly there is no time for simulation or verification. Our approach is therefore to
verify the correctness of the synthesis algorithm for the partial evaluation process. If
the correctness of partial evaluation can be assured for any source circuit, then system
correctness can be concluded. Of course, the result of partial evaluation will be correct
only relative to the correctness of the original design. But this can be checked off-line.

The equation shown below states the correctness criterion in general terms. It is similar
to software partial evaluation presented earlier. The specialized circuit will have the
same behavior as the generic ones when applied with a specific static value.

Our verification method is as follows. The circuit at the CAL level is specialized by a
partial evaluation algorithm written in C++. The result is a new circuit configuration,
which our run-time system places on the FPGA. The partial evaluation part of this is
formalized and verified in the PVS environment. The generic function unit that lies
within each FPGA cell is modeled using the standard relational modeling style in
higher order logic. The syntax and semantics of circuits at the netlist level is then
embedded using the deep embedding method [2]. The embedding uses configured
generic function unit models as the hardware model. The partial evaluation algorithm is
then described abstractly as a PVS function and a proof of the correctness theorem
above is done. The same process of specialization as is done by the actual C++ coded
partial evaluator is carried out by the abstract representation of this algorithm in PVS.
This results in a similar transformation of netlists as occurs at the CAL level (figure 5).
Of course, the relationship between our PVS verification and the actual specialization
code is only informal, but we aim to make it close enough to justify at least some confi-
dence in the correctness of the actual code.

circuit (static,dynamic) ⇔ (dynamic) (eq 5)PE (circuit, static)

Figure 5. The partial evaluation of circuit at the CAL level
and proof of the specialization scheme.

Partial evaluation at the CAL configuration level will eventually have two main com-
ponents: reconfiguration of cell functionality, and routing reconfiguration. Routing
reconfiguration is needed to exploit the connectivity resources of the XC6200 for larger
speedups. Verification will cover both parts of the specialization process. At present,
our work on verification has addressed only transformations of configuration of the
generic function unit. The netlist deep embedding is currently under construction. A bit
further in the future will come an extension of the verification to cover routing transfor-
mations.

The design flow in figure 4 includes Lava descriptions of the circuits. Preliminary work
on a shallow embedding of the Lava language using functional hardware modeling
highlighted two problems: Lava does not include routing information, and the Lava cir-
cuit model abstraction is too far from the CAL level, resulting a vague relation between
algorithms at those two level. For these reasons, our work on formal verification is not
be targeted at the high level Lava HDL level, but at the EDIF and CAL level.

5 Verification Models for Netlist HDL

5.1 Hardware Modeling

The Xilinx XC6200 series has a unique hierarchical architecture. The FPGA surface is
organized as an array of simple cells. The contents of each simple cell is called a func-
tion unit (figure 6). A function unit has six components, five multiplexers and one D-
type register. The function unit of each basic cell can be configured either as a logic

Circuit
Description

(CAL)
PE

Circuit
Description

(CAL)

PVS
Description

PE (PVS) PVS
Description

function or a register by supplying some configuration bits for the multiplexers. Each
cell is connected to its four borders (north, east, south, and west). Basic cells are
grouped into 4x4 blocks of 16 cells. A 4x4 array of these 4x4 blocks of cells forms a
16x16 block. This hierarchical structure is repeated until 64x64 blocks or 256x256
blocks are formed, depending on the chip series. The whole structure is then sur-
rounded with I/O pads. A similar scheme for routing appears within the hierarchical
structure. A 4x4 cell block has its own associated routing resources, which provide fast
interconnections. This interconnection capability is known as the length 4 fast wire. A
similar routing hierarchical structure appears on the 16x16 block, the 64x64 block, and
the 256x 256 block. In addition, the FPGA series we use introduces a special fast wire
called a magic wire. A magic wire has the capability to route signals from individual
cells to certain points on its 4x4 block border.

Figure 6. Function unit circuit diagram of the FPGAs XC6200

In PVS, the behavior of the function unit of the basic cell is specified using the rela-
tional modeling style. The function unit can be developed by using 3 basic components:
the inverter, the two input multiplexer, and the D-type flip-flop. All other components
in the function unit can be developed by using this three basic components. One impor-
tant feature in the model is that every component has time varying inputs and outputs.
The formal model employs the usual notion of signal, which is a boolean valued func-
tion taking discrete time arguments.

The three basic specifications are shown in the PVS theory in figure 7. The inverter inv
has two ports, a single input i0 and output o. The multiplexer mux2 has four ports,
three inputs i0, i1, sel and a single output o. These two component models are based on
the zero time delay assumption. The D-type flip-flop model is implemented using a
unit time delay. The system samples the input value (din) when the clock rises (rclk)

and holds the value on the output q until the next rise of the clock. The second output
(qnot) is an inverted output function of q. A more detail explanation of abstract time

D Q

Q
CS

F

RP CLR

X1

X2

X3

Y2

Y3
CLK

modelling can be found in [9].

 i0,i1,sel0,o,din,q,qnot,clk,clr: VAR signal[bool]
 t : VAR time

 inv(i0,o) = ∀t. o(t) = ¬ i0(t)

 mux2(i0,i1,sel0,o) = ∀t. o(t) = (sel0(t) ⇒ i1(t) | i0(t))

 rclk (clk,t) = ¬clk(t) ^ clk(t+1)
 rdff(din,clk,clr,q,qnot) =

 (∀t. q(t+1) = (clr(t+1) ⇒ (c_rclk(clk,t) ⇒ din(t) | q(t)) | FALSE) ^

 (∀t. qnot(t) = ¬q(t))

Figure 7. The basic relational specifications:
inverter, two input multiplexer and D-type register.

The FPGA function unit relational model is presented in figure 8. The formal imple-
mentation description is simply a direct transcription into logic of the circuit diagram
on figure 7 (which itself is given in the Xilinx data sheets) [13]. The variables x1 up to
f are the external I/O ports of the function unit. The variables sy2_0 up to cs are the
configuration bits which determine the external behavior of the function unit. The inter-
nal interconnection of the system is hidden by the standard method of existential quan-
tification. A more detailed explanation of hardware modeling in PVS is presented in
[12].

 % external I/O ports
 x1,x2,x3,clk,clr,f : VAR signal[bool]
 % configuration bits
 sy2_0,sy2_1,sy3_0,sy3_1,rp,cs : VAR signal[bool]
 funit (x1,x2,x3,clk,clr,f,sy2_0,sy2_1,sy3_0,sy3_1,rp,cs) =

 ∃(Y2,Y3,RPM,C,S,buf1,buf2,buf3,qnot).

 ∀t. inv(x2,buf1) ^

 inv(x3,buf2) ^
 inv(qnot,buf3) ^
 mux4(x2,qnot,buf1,buf3,sy2_0,sy2_1,Y2) ^
 mux4(x3,buf2,buf3,qnot,sy3_0,sy3_1,Y3) ^
 muxn2(Y3,Y2,x1,C) ^
 muxn2(C,qnot,rp,RPM) ^
 rdff(RPM,clk,clr,S,qnot) ^
 muxn2(S,C,cs,f)

Figure 8. The XC6200 FPGA function unit model in PVS

As an example of verification using this model, consider an AND gate implemented by
setting configuration bits (figure 9). The signals sig_zero and sig_one are the ground

and vcc sources respectively. These two signals are used to model the SRAM
configuration bits, which have the same behaviour as signal sources. Only some of the
input configuration bits are needed to configure the function unit. The unused
configuration bits can be ignored by simply existentially quantifying them. Finally, the
configured function unit model can be proved correct with respect to a high level
behavioural specification and2_spec. At present, 14 possible configurations have been
verified in our PVS theory.

 and2(in1,in2,out1) =

 ∃ (buf2,buf3,sg0,sg1,clk1,clr1).

 ∀t. sig_zero(sg0) ^
 sig_one(sg1) ^
 funit(in1,in2,in1,clk1,clr1,buf3,sg0,sg1,sg1,sg0,buf2,sg1) ^
 inv(buf3,out1)

 and2_spec(in1,in2,out1) = ∀t. out1(t) = in1(t) ^ in2(t)

 tm_and2: THEOREM and2(in1,in2,out1) = and2_spec(in1,in2,out1)

Figure 9. Functional behaviour modeling based on the function unit and proof

5.2 Sematics Embedding Approach

In the design flow in figure 4, the Lava program synthesizes a structural circuit descrip-
tion and produces a flattened description of the circuit in the EDIF Version 2.0.0 syn-
tax. The netlist describes the components as simple gates and models the
interconnection between components. In our verification, circuits at the netlist level
will be specified in higher order logic notation using the deep embedding methodology.
As already mentioned, the choice of a deep embedding of netlists was driven by previ-
ous experienced with a shallow embedding of the Lava HDL semantics. The shallow
embedding limited the proofs to functional properties. Furthermore, the vague corre-
spondence between the HDL description and what actually happen on the chip gave a
less useful verification result.

The netlist syntax we will embed in PVS is presented in figure 10. A netlist description
contains a cell library which consists of a collection of cells. The circuit as a whole is
also part of the library and is a cell constructed from the predefined basic cells in the
library. The Lava netlist generator generates circuits as a single flattened cell. Within

the cell, the circuit is described as components and their interconnection relations. This
structure at the netlist level is maintained in the higher order logic hardware model. The
netlist syntax follows the standard EDIF format, which makes the language well struc-
tured. The deep embedding semantics will be implemented as a function which takes a
circuit in the netlist form as its argument and produces a circuit in the relational form as
a result.

 cell_library ::= library_name cell_name [interface]*
 [instances]*? [net]*?
 interface ::= interface_name [direction]
 direction ::= INPUT | OUTPUT | INOUT
 instance ::= instance_name cell_name cell_location
 net ::= net_name [pin]*
 pin ::= interface_name instance_name
 library_name, cell_name, cell_location, interface_name,
 instance_name, net_name ::= identifier
 identifier ::= [A-Za-z][A-Za-z0-9_]*

Figure 10. Simplified netlist syntax from Lava netlist generator. The optional items are followed
by ‘?’, and the repeted items are followed by ‘*’.

C++ :
if (fn == INV)
{ if (input == cell[i][j].input_a)
 { if (value_a == ZERO)
 { cell[i][j].cell_function = ONE;
 setFunction(i, j, ONE, cell[i][j].input_a);
 return ONE;}

PVS :
test_inv_low : THEOREM cell_inv(0) = cell_high

Figure 11. Transformation modelling from C++ to PVS

The run-time partial evaluation algorithm is implemented in the C++ language. The
algorithm uses a constant propagation scheme by simply propagated the static value
and specializing all the corresponding cells into a simpler cell. Consider an example, an
inv gate cell. If the input of the inverter has a static value of 0, then the cell can be spe-
cialized to a vcc source (figure 11). All the possible cell transformations have been
implemented in PVS and proved correct (52 cell transformations have been verified).
The next step is to develop a high level abstraction of the algorithm which captures all
possible circuit netlist transformations in PVS. We will then prove that the partial eval-

uation function applied to the circuit netlist and the static values will result a special-
ized circuit netlist whose semantics agrees with that of the original (eq 5).

6 Summary and Future Work

Run-time circuit specialization poses an interesting challenge for verification of the
specialization algorithm. Our approach is based on two aspects: hardware component
modeling, and semantic embedding of the circuit description language. The problem is
addressed in two hierarchical steps, which reflect the design cycles: proving the system
correctness at the netlist level and then extending the system with the routing informa-
tion present in the CAL level. The hardware model at the netlist level is based on a
generic function-unit. This function-unit can be configured to perform a certain func-
tional behavior, either to be as a logic function or a register. At the current stages of our
work, 14 configurations of basic cell functionality and 52 cell transformations have
been verified. The model then will be used in verifying the specialization transforma-
tion algorithm based on a high level abstraction of the implemented C++ algorithm. We
will do this by developing a deep embedding of a netlist semantics and defining a high
level specialization algorithm in the PVS environment.

Acknowledgments

This work is part of a project funded by UK-EPSRC (project reference GR/L38530),
the United Kingdom Ministry of Defence, and Xilinx Inc. It is managed by Tom Mel-
ham (University of Glasgow), Satnam Singh (Xilinx Inc.), and Derek McAuley
(Microsoft Research Labs, Cambridge). The run-time partial evaluation system is
developed by Nicholas McKay.

The authors thank the SRI team for making the PVS system available to perform the
research presented in this paper. We also thank Richard Boulton for providing us with
an unpublished paper on embedding netlists in higher order logic [1], and Paul Jackson
for valuable help with PVS.

References

[1] Richard Boulton. ‘A Semantics for a Simple Netlist Language’. Unpublished paper.
[2] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, and

John Van Tassel. ‘Experience with Embedding Hardware Description Languages
in HOL’, in Theorem Provers in Circuit Design: Theory, Practice and Experience:

Proceedings of the IFIP WG10.2 International Conference, Nijmegen, June 1992,
edited by V. Stavridou, T.F. Melham, and R.T. Boute, North-Holland, 1992, pp:

129-156.
[3] Jim Burns, Adam Donlin, Jonathan Hogg, Satnam Singh, and Mark de Wit. ‘A

Dynamic Reconfiguration Run-Time System’ in IEEE Symposium on FPGAs for

Custom Computing Machines, Napa Valley, California, April 1997 : Preliminary
Proceedings, pp: 82-91.

[4] Charles Consel and Oliver Danvy. ‘Tutorial Notes on Partial Evaluation’, In ACM

Symposium on Principles of Programming languages, 1993, pp: 493-501.
[5] Patrick W. Foulk. ‘Data-folding in SRAM configurable FPGAs’, in IEEE Workshop

on FPGAs for Custom Computing Machines, Napa, California, April 1993,
pp:163-171.

[6] P. Hudak, J. Fasel, and J. Peterson. ‘A Gentle Introduction to Haskell’, Technical
Report YALEU/DCS/RR-901, Yale University, May 1996.

[7] Niel D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Auto-

matic Program Generation, Prentice Hall International, 1993.
[8] Nicholas McKay and Satnam Singh. ‘Dynamic Specialisation of XC6200 FPGAs

by Partial Evaluation’. to appear in proceedings of Field Programmable Logic and
Applications ’98 Workshop.

[9] T.F. Melham, Higher Order Logic and Hardware Verification, Cambridge Univer-
sity Press, 1993.

[10] Satnam Singh, Jonathan Hogg, and Derek McAuley. ‘Expressing Dynamic
Reconfiguration by Partial Evaluation’, in IEEE Symposium on FPGAs for Custom

Computing Machines, Napa Valley, California, April 1996 : Proceedings, edited by
Kenneth L.Pocek and Jeffrey Arnold, IEEE Computer Society Press, 1996, pp:
188-194.

[11] Satnam Singh and Mary Sheeran. ‘Designing FPGA Circuits in Lava’, unpub-
lished paper.

[12] Madayam Srivas, Harald Rueβ, and David Cyrluk. ‘Hardware Verification using

PVS’ in Formal Hardware Verification Methods and Systems in Comparison,
edited by Thomas Kropf , July 1997, Springer Verlag LNCS 1287, pp: 156-205.

[13] Xilinx. ‘ XC6200 FPGA Family Data Sheet’. Xilinx Inc., 1995.

