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Abstract

The design and analysis of embedded, mixed hardware/geftsystems, such as PC
cards, application specific hardware, m- and e-commercieagvmobile telecommuni-

cation infrastructure and associated software drivelsaid.

An important issue for correct codesign is the searctafbighly compositional and
unifying formal approachhat crosses the hardware/software boundaries and enables
to keep up with the fast growth in the complexity and varietelectronic devices and

their associated software.

Hardware/software codesign is a relatively new disciplim&rconnecting several
other fields of research such as Electronics EngineeringCamaputer Science with the

earliest reference to codesign dated back to 1992.

In this thesis, | describe an integrated compositional éaork for codesign of mixed
hardware/software systems, together with its underpgthiaory of semantics and refine-

ment.

My work integrates formal methods into the design procesdlaafocus of the thesis
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is on refinement from a formal specification into a formal ek part and a formal
software part.

Central to my methodology is that the synthesis and deseyh with a single high-
level abstract specification which captures the desireaetr(s) of the system. Deci-
sions are then taken throughbrrectness preservingfinement steps.

I have given formal semantics to Verilog — a Hardware DesinipLanguage (HDL)
conceived in and extensively used by the hardware industiyn beth denotational(in
specification-oriented style) araperationalterms and my work on Verilog enables me
to blend existing and commercially available hardware fsgsis tools and methodolo-
gies into my formal framework. This has the benefit of linkismftware development
with hardware development in an integrated fashion ancetbex span the gap between
hardware and software formally.

The equivalence between the two forms of semantics is pramema set of generic
refinement laws is presented. A detailed case-study of atsraet application of the

Rivest Shamir Adleman (RSA) encryption algorithm is praddo evaluate my approach.
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Chapter 1

Overview

1.1 Introduction

The design and analysis of embedded, mixed hardware/geftsystems, such as PC
cards, application specific hardware, m- and e-commercieagvmobile telecommuni-
cation infrastructure and associated software driversard. A major reason for this is
the ever increasing complexity of hardware and softwaréesys coupled with the his-
torical divide between hardware and software design. Thezemany possible reasons
for choosing a mixed hardware/software, also called hgereous, implementation of
a system. Very often conflicting goals and trade-offs havieet@onsidered and the best
compromise between them must be found. Some typical aspboth have to be bal-
anced are performance, cost, flexibility, distributionypo consumption, size and fault

tolerance.



CHAPTER 1. Overview 2

An important issue for correct codesign is the searctafbirghly compositional and
unifying formal approaclii34] that crosses the hardware/software boundaries aridesna
us to keep up with the fast growth in the complexity and vgrigt electronic devices
and their associated software. An approactoimpositionalf it includes any method by

which

a) properties of a system as a whole can be inferred from prepeof its compo-
nents, without additional information about the interrtalisture of those compo-

nents [19].

b) requirements that a system must meet are transformeckmiirements towards its

components.

Such an approach will allow us to compose complex systemafaimnpler and/or already
existing sub-systems, i.e. simplification, re-use, reteegying and bottom-up design,
and at the same time infer requirements and specificatiorsifmsystems, i.e. top-down
design.

More often than not embedded systems work in “hostile” emment aritical sub-
systems. Thus we need to be able to guarantee their cortemtiber formally; hence the
formal underpinning is central. In the software and everhahardware industrgim-
ulation has often been considered synonymous waétification Although many formal
techniques are now beginning to find their rightful placejally the design process still

consists of obtaining an implementation from an informaafication without the use
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of any formal design techniques. Both hardware and soft@egehen simulated for a
number of inputs, an approach knownaassimulation77, 2, 23]. Bugs discovered are
removed and the simulation process is repeated over again.

I am convinced that some degree of rigour must be incorparatéhe process de-

scribed above and my work is a step in this direction.

1.2 Scope of the Thesis and Related Work

Hardware/software codesign is a relatively new discipiiiterconnecting several other
fields of research such as electronic engineering and cangeience. The earliest refer-
ence to codesign is dated 1992 at the First Internationak$%mp on Hardware/Software
Codesign [95].

In this thesis, | describe an integrated compositional éawork for codesign of mixed
hardware/software systems, together with its underpmtiaory of semantics and refine-
ment. | advocateefinementis my prime design method and | build my work on previous
research in refinement of software [88, 13]. Here | focus nooréhe formal refinement
and development of hardware. The codesign process as a wshsdendly based upon
my unifying semantics which crosses the boundaries betaetware and hardware in a
seamless way. A unique characteristic of my framework isitltan validate and analyse
system’s behaviours within singlelogical formalism, namely Interval Temporal Logic

(ITL) [65, 63, 64] and its executable subset, Tempura [64, Bl®te that the refinement
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process is an interactive and thus cannot be fully automated

My approach is inspired by existing codesign systems, sapacC [27], Polis [3]
and the Lyngby Co-Synthesis System (LYCOS) [55]. The tradél design flow is that
a project starts withnformal Specificationalso called requirement, which defines the
behaviour and the functionality of the product. Immediatgter the specification, a de-
signer should split the application inteardware and software[26]. According to the
design flow given in [71], designers have to transform B&havioraldescription into
Register Transfer Layer (RTlsing high level synthesis tools. At every step of the de-
sign process, simulations and tests are performed to clec&adrrectness of the trans-
formations with respect to the requirements. Althoughehests can be automated to a
considerable degree, there are many cases when testingloedynot provide the nec-
essary level of correctness and trustworthiness. Morendftan not, crucial test cases
are overlooked which, in the case of a critical system, maylten human lives and/or
money being lost.

My work integrates formal methods into the design procesdlaafocus of the thesis
is on refinement from a formal specification into a formal ek part and a formal
software part.

Existing codesign systems, such as Polis [3] and LYCOS [B86]ude some formal
verification capability, which is most often achieved by a$en external tool, such as
a model-checker. The model-checker can only be used whestetfign is already quite

concrete and such an approach cannot maintain the integritye whole design. In



CHAPTER 1. Overview 5

contrast, my approach enforces correctness of the desapgess by working entirely
within a formal system.

There have been successful hardware/software verificaffonts in academia and
more recently in industry. The majority have used modekkhg techniques [17, 49,
38], but also for example functional calculi [8, 44] and Alast State Machines [7], and
recently more powerful tools such as Higher-Order Logic (Hi{31] have been gaining
ground.

There is an increasing industrial interest in ITL, for exdenyerisity has adopted
concepts from ITL in theifTemporal elanguage [37]. IBM has introduced a temporal
logic calledSugar[4] containing ITL-like operators which are targeted at ingkthe

logic more usable to design engineers.

1.3 Original Contribution

Central to my methodology is that a synthesis and desigh\stdr a single high-level
abstract specification which captures the desired behggijoof the system. Design de-
cisions are then taken througbrrectness preservingfinement steps.

| choose ITL as my main behaviour describing formalism. Alsoled system'’s prop-
erties can beompositionallyverified using the ITL's compositional proof rules &s-
sumption/commitmestyle (see section 3.2) which make no distinction betweéwaoe

or hardware. Again using sound refinement, the ITL specifinatan then be composi-
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tionally refined into a set of executable Tempura modulesthad it can be simulated
and analysed within Tempura, i.e. simulation and refinerasntightly integrated in my
approach whereas behavioural patterns that emerge dimengjrhulation can help with
choosing the next refinement step.

Then | can analyse the set of executable Tempura formulasdey af techniques,
including quantitative and statistical data gathering][@®d based on this, | can select
which Tempura formula (or module) will be implemented indwsare and which in soft-
ware. The result of this phase is a partitioning into two s of modules. These will
be considered best implemented in hardware and softwaggctvely.

The interface(s) between these modules will largely depenithe target architecture
and its underlying application. Fundamental to my apprastie ability to formulate and
compositionally prove amterface theorenby using the ITL proof rules, even before the
hardware/software partitioning decision has been takenraoontrast to the commonly
used ad-hoc techniques. By adopting a unifying formalisohsas ITL | have increased
the confidence level in the partitioning process.

I have given formal semantics to Verilog [30, 71, 80, 29, 1y,Hardware Description
Language (HDL)of choice, in bothdenotational(in the form of specification oriented)
andoperationalterms [21, 22]. These two reflect the duality of the usage et#jga-
tion languages, i.e. | need to both descrbepertiesandmachinesvhich implement, or
compute, these properties. | have used these semanticefitmgv/to formally underpin

the refinement transformation from an abstract ITL/Tempecification into Verilog as
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well as the refinement from behavioural to RTL specificatiatiin Verilog itself.

My work on Verilog enables me to blend some commerciallylakdé hardware syn-
thesis tools and methodologies into my formal frameworksTas the benefit of linking
software development with hardware development in an rated fashion and therefore

span the gap between hardware and software formally.

The unifying semantics for Verilog allows me to break thrbyget another barrier
— the semantic differences between the Behavioural and Thep@rts of the hardware
development process. | can now formally prove if an RTL djpeation refines, i.e. im-

plements, its Behavioural specification.

On a purely technical side, | show how | can incorporate mgmaariables into Tem-
pura, i.e. | conservatively extend the language of Tempui@4i,+ ! and prove some

properties about these memory variables.

My Operational semantics for Verilog, unlike most of the pweed semantics in the
literature, captures both behavioural and RTL construntsigfully parallel. | prove the
equivalence between the operational and the denotatienadstics and this guarantees

the uniformity of my work.

see section 3.4.3 on page 42
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1.4 Thesis Outline

Chapter 2 gives a review of the subject, chapter 3 focusesyonamputational model
which serves as an architecture for hardware/softwaresigil@nd within it section 3.2
describes my specification language of ITL/Tempura and@e&.6 presents a set of
practical refinement rules. In chapter 4 | develop my dermtat semantics for Verilog,
with the operational semantics given in chapter 5 and, alycthe equivalence between
these two formalisms is presented in chapter 6. Finally a sagly of smart card appli-

cation is given in chapter 7.



Chapter 2

Hardware/Software Codesign: A

Review

| give an overview of hardware/software codesign as a diseijpSome
historical remarks put the subject into context and showptiogress
of the development in the field. | give a critique of the earlgys of
constructing mixed hardware/software systems and | shawdworent
projects demand new approaches and pose new challenges witen

some cutting-edge techniques.

2.1 The Early Approach

Hardware/software codesign as a term was invented in 19%2eafirst International
Workshop on Hardware/Software Codesign [95]. Figure 2veégia typical design flow

9
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widely adopted at that time.

Informal Specification

Hardware’@el ﬁl‘vare model

| |

_ Hardware Sgg?t‘avlglrigg

S Synthesis Generation

S ®

= L L 2

£ =

) Hardware Software
Blocks Blocks

Communication Synthesis
and Architecture Integration

l

Prototyping

Figure 2.1: Traditional Design Flow in Codesign

According to this traditional design flow, a project startshwan Informal Specifi-
cation, also called requirement, which defines the behawaond the functionality of the
product. Immediately after the specification, a designenldigplit the application into
hardware and software which implies that several desigrsibes must have been taken

at this point. These include:
¢ the underlying architecture has been fixed;

¢ the functionality and the behaviour of the whole system Hmean split between the

software and the hardware into different modules;

e the communication protocol between the system modulesdes thosen.
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Once the functionality of the system has been split betweehardware and the software
parts, the development of these starts. It goes through limggehardware synthesis or

software generation, and, as a result of that, hardwate/ad blocks are obtained.

This is followed by merging system blocks using the archited and communica-
tional paradigms chosen at the point of modelling and ontgrathat we can build a

working prototype of the system as a whole.

Many problems were encountered while using this design fldast of them came
from the very early design decisions taken in accordance #sil mentioned above, the
communication between the different system modules andrttatecture of the whole
product are fixed early in the design process without anydaéibn of their suitability.
The hardware/software split is also decided and enginegitbdut any check. Most of
these crucial choices are underpinned with intuition arst peactices rather than rigid

reasoning.

Despite the undergoing testing and simulation during tiveld@ment of the hardware
and software modules, the first place where the system, asoewbk assembled and
tested and/or simulated is at the point of the communicatiorthesis and architecture
integration. Only at this moment, very late in the designleyone is able to check if
the design decisions taken at the very beginning are cowiglctrespect to the original

system’s specification which, in the mean time, may have bbanged.
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2.2 The Faster, the Better

Historically, hardware/software codesign was mainly \@evas a methodology for devel-
oping hardware accelerators, say in a Fast Fourier Tramsftoon (FFT) application [9].

The typical architecture of these early days [45] is skedahd=igure 2.2.

———— . micro Processor Memory

!
N |
Hardware

Accelerator

e e

Figure 2.2: Accelerator Architecture

Here we have a piece of software code that needs to be adeeleiidhe design pro-
cess consists of finding these parts of the code that are miable for acceleration
and placing them into a hardware accelerator. In this sétigoprogram is very simple,
sequential piece of code, the underlying architecture isn@le bus with co-processor
communication and the hardware/software partitioningtégic The challenge here was
to evaluate the best configuration, in terms of speed of éxetletween the code on the
micro processor and the hardware co-processor. Viewedwys the problem reduces
down to granularity and optimisation and has already beéreddy large in previous
research as part of the LYCOS project [47, 48, 55, 96]. LYC@I&s on, what essen-

tially are granules of computatioBasic Scheduling Blocks (BSBiat may be moved
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between hardware and software. Then, the partitioningittgo PACE is used to obtain

fast functional partitions.

2.3 Embedded Systems

An obvious application of hardware/software codesign igetgpment of embedded, or
even distributed embedded systems [11, 46, 51, 52]. A typipplication would in-
volve heterogeneous componentuulti-languageandmulti-model specificationss well

as complex targedrchitectures Figure 2.3 gives an idea of a typical application involving

such a model.

Sensors  Actuators Sensors  Actuators Sensors  Actuators

Sensors  Actuators
Input/Output Input/Output Input/Output
%CACHQ %CACHQ %CACHQ
Network Interface Network Interface Network Interface I n p u t/o u tp u‘t
Gateway FPGA | RAM
Sensors Ac}uators Sensors Ac}uators Seps0rs  Actuators
Input/Output Input/Output Input/Output F LAS H
R R -
CPU | CACHE
[cPd—4{cacre [cPd—4{cacre Hcache
Network Interface Network Interface Network Interface
T T Network Interface
Gateway

Figure 2.3: Distributed Embedded System

All nodes are interconnected and co-operate in a tandenso8and actuators can
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be connected to both digital and analogue input/outputsyisbems. The internal compo-
nents of a node communicate via a network, e.g. a bus. Fielgr@&mmable Gate Arrays
(FPGAs) are normally reconfigured on the fly, thus making ggpale for the system to
adapt to changes in its environment. Network Interface iges/connectivity with other
nodes and is a basis for the distributed computational model

Many applications have very complex architectures. As shiovFigure 2.3, different
tasks can be distributed between many netwoiggstems on Chipnd often actuators

controlled by one of the nodes depend on information calkbtly sensors at others.

2.3.1 Mixed Hardware/Software Components

There are many possible reasons for choosing a mixed hagthoftnvare, also called
heterogeneous, implementation of a system [74, 24]. Vetgnothere are conflicting
goals, and trade-offs have to be made to find the best compednetween them. Some

typical aspects which have to be balanced are:

Performance More often than not an embedded system must perform in hafdimee.
Depending on the application, there might not be any pracesavailable with
sufficient performance. Then it becomes necessary to désigiware, where the
parallelism can be exploited to gain enough computatiooaigp. A typical exam-

ple would be a Joint Photographic Experts Group (JPEG) exrdada].

Cost Constructing custom built hardware or using high-end ngovoessors is usually
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quite expensive, and for a system there is no need to perfarckey than the re-
guirements. Implementing parts of a system in software igamficantly reduce the
product cost. Using just such an argument many hardware aoiep introduced
the so called “soft modems”, also known as Host Controlledi#tos, which lack

the crucial Universal Asynchronous Receiver Transmitt&kRT) hardware com-
ponent and rely on the host computer to perform the UART fonetvia specialised

modem drivers.

Flexibility If a part of the behaviour is likely to be modified after thetsys is in opera-
tion, or if several versions of the same system are planhegimportant to allow
changes to be made as easily as possible. This might be amemgfor choosing
to implement the parts which need to be changed in softwatareconfigurable
FPGAs. Many embedded devices in telecommunication agicause firmware

and they are normally being upgraded regularly.

Distribution In some situations the use of a heterogeneous architestdretated by the
environment. For instance, it could be the case that theosg@sd actuators of
the system are geographically dispersed, which motivatestiabuted architecture
where the computing resources are best placed close to ldtedgarts of the

environment. Automotive applications follow similar dibution.

Ynitially, all soft modems supported MS Windows only, hettice alias WinModems. However, this
trend has now been broken and LinModems for Linux are alsavkno
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Power Consumption Modern microprocessors run at ever-increasing clock faqies,
and since the frequency is a factor which contributes verghria the power con-
sumption, considerable savings can be made by using andspipin Specific In-
tegrated Circuits (ASIC) that runs at a lower clock frequerait still reaches the
same performance through increased parallelism. Mobitgening has very strict

requirements on the consumption.

Weight and/or Size Many embedded systems are in some sense portable, and ¢éhen th
weight and/or the size of the product becomes importants iBhifor instance, the
case for mobile telephones, but also in aerospace and atwenapplications. If
weight is an issue, it can be desirable to integrate as muwattibinality as possible

into a smaller piece of hardware.

Fault Tolerance Many embedded systems are safety-critical, and they muostian, at
least partially, even under severe disturbances. Thergtomight be necessary to
duplicate functionality, and implement the same part iresa\different technolo-
gies to reduce the risk of systematic errors which might nedkeomponents of a

certain kind faulty.

The list is by no means complete. Many other parameters doelldonsidered for
particular applications which shows the complex characteéhe development process

from the very early stages to the very latest.
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2.3.2 Multi-Language and Multi-Model Specifications

The choice of the underlying paradigm is a crucial one for yrembedded applications.
Nowadays, designers can select from many languages, bodes$oribing hardware and
software, levels of abstraction and communication paradifl1]. Often, the develop-
ment process involves shifts from one to another. Let us lmadfly into some typical

examples when a shift in the paradigms is bound to occur duhi@ development of the

system.

e Consider an implementation of a popular network protoc8|.[1If the underly-
ing physical transport layer is asynchronous and unrdialld in the same time
the application requires synchronous channel for comnatioic, then the obvious
transition from synchronous to asynchronous communiodtas to occur at some

stage of the design process.

e Typically, designing a system in Verilog HDL [71, 29] stawigth a high levelBe-
haviouraldescription. However, the desired specification is a fdoly level RTL
design and the final goal is an even lower leés&licturaldesign. The transition be-
tween RTL and Structural, or gate level, has already beemzated and poses little
concern. On the other hand, the shift between a BehaviondaRa L specification

is normally underpinned by best practice and intuition.

Obviously, the problems of choosing the correct paradigtheffectively switching

between different levels of abstraction are significant.e Blaccess of a project often
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depends on theorrectnes®f these transitions.

2.3.3 Architecture

Architecture selection is an important part of the develeptprocess and many re-
searchers position it at the moment of system integratidh [Zhe designer must care-

fully select the following aspects of application’s areluiture.

e A set of components, albeit hardware or software, each onehath has its be-

haviour and interface specified in a common formalism.

¢ An inter-networking media, such as channels, buses, nkteantrollers.

¢ A well defined protocol by which all components communicateé eo-operate.

Each one of these elements is crucial and its selection neugtiifiable.

One may view the architecture selection as a mapping praceiss takes the func-
tionality of the system and maps it down to a set of (predejicedponents. This nor-
mally is justified by the desired manageability of the mappimocess. In other cases,
the architecture may be limited to a library of predefined ponents due to vendor re-
strictions or interfacing constraints. Memory hierarchyan I/O subsystem design based
on standard components has been successfully automategths technique. Differ-
ent approaches work on retargetable compilation [79], oa @ary abstract formulation
of partitioning for co-design [42, 43, 69, 81]. The struetwf the application specific

hardware components, on the other hand, is generally maslttastrained.
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| would advocate the idea of stepwise calculative refineroéttie system, which in

effect helps me to obtain a provabkrchitecture.

2.4 Design Constraints and Requirements

In addition to the aspects of components design given in@eet3.1, there are some
other design constraints that one should consider whenajaag and/or maintaining
a mixed hardware/software system. All of these are dirensequences of a composi-
tional approach which should be adopted if one wishes tooegphe full benefits of the

codesign.

Legacy SystemsThe benefits of the compositional codesign become highligleisvhen
it comes to evolving legacy systems [84, 85, 24] and bringiregn up to date with
evolving needs and/or evolving technology. Let us condigerfollowing example
for illustrative purposes. Suppose we were given some reopgnts which can
only be met by using ASIC module because the available psocgsre too slow
and/or too expensive for a software implementation. Theegyss developed using
compositional codesign and deployed. With time, thereaoepossible scenarios

which could lead to a need for redesign.

¢ Relaxed initial timing requirements.

2with respect to a formal requirement
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e Improved and/or cheaper Central Processing Unit (CPUniaolgy.

Any of these could trigger the removal of the customisedWward component and
replacing it with equivalent software package. This ingbiy gives a cheaper and

a smaller final product.

Obviously, the need for replacing a software module withialeggr hardware coun-

terpart is also possible.

Time to Market It is commonly accepted that designing with reusable coraptsre-
duces the necessary time to market [72]. In this context,pomitional co-design
has a huge role to play since it allows us to easily incorgoramponents into both

hardware and software contexts.

Of course, the list of the above design requirements coulexbended. The variety
and complexity of those and the previously listed in sec8dhl tell us that the initial
methods used when codesign meant little more than simptevaae accelerator are in-

adequate nowadays.

2.5 Modern Trends in Codesign

The newest trends in the field of hardware/software codasiunde some of the follow-
ing issues. All of them attempt to tackle the design of emkddslystems and improve

on aspects like flexibility and adaptability, or explore newhnologies for building more
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compact systems.

2.5.1 Temporal and Spatial Partitioning

Consider again the simple idea of a hardware acceleratengivsection 2.2. Here we
will build on this via a dynamic reconfiguration “on the fly” parts of the software code
into an FPGA accelerator. As shown on Figure 2.4, we would tikuse the reconfig-
urable FPGA dynamically and build the accelerator for théecarhen it is needed rather
than at compile time. This idea does not give anything newerms of a underlying

architecture but does improve on flexibility. Obvious betsedire

e improved utilisation of the reconfigurable datapath in tR&R,

e reduced size of the real hardware and

e |lower cost and power consumption as a result of reduced laaedw

Most importantly, this allows the system to adapt to speeifidronments by selecting
parts of the software code to be implemented in hardwarenguhie runtime and hence
improving on response time.

The example in Figure 2.4 gives how parts of a program cod®deireg temporally
loaded at different timeg, < t; < t, into the FPGA accelerator.

Of course the achieved flexibility does not come for free. Whele concept relies

heavily on a scheduler that decides which part of the codestodmpiled and loaded
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Figure 2.4: Temporal and Spatial Partitioning

into the FPGA “on the fly”. The particularly interesting aiaesearch in reconfigurable
processors [52] implements this idea. They are considdteattive due to their ability
to adapt to a particular program and, thus improve its tinpraperties. The challenge in

this context is to construct a compiler that utilises thestdee in full.

2.5.2 System on Chip

System on chips [29, 82, 24, 39, 83] are in effect completéegys on a single piece of
silicon. The normally separate pieces such as the CPU, nysroatroller, main memory,

I/O control, and the various buses and interconnects, aseglon a chip. Main benefits
are higher integration, reduced power consumption and Beeause of limited space on
the chip though, the tradeoff of functionality implementedhardware versus equivalent
software package becomes ever so important. Thereforevhestsoftware codesign is

the prime methodology for system on chip development.
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Interesting aspect of todays system on chip design is tleatrétditional bus-based
architectures are being replaced by “networks on chip” vaslsociated protocols and

network controllers.

2.6 Summary

As a roundup of my survey on co-design | can simply say thatléségn methods used in
the early days are no longer applicable. The assumptioratbpécification is a “simple”
and sequential program is no longer valid. Many applicatican be heterogeneous and
very complex.

The main goal of codesign is no longer acceleration onlyait loe power consump-
tion, size, available space on the chip, flexibility, adapiiy, compositionality and main-
tainability. Architectures are no longer simple and/or-based either. They can be very
complex networks and, especially with distributed appites, can have the topology of
the Internet [24].

What is therefore needed is a unifying methodology withinclth

the whole system is derived from a single logical represtén,

the system is compositionally refined,

the gaps between various abstraction levels are bridgéd an

simulation and verification are integrated.
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In the following chapters | design and evaluate such a metlogg.

24



Chapter 3

A Unifying Methodology for Codesign

My development strategy is presented together with thenlyidg for-
malisms of ITL and Tempura. Several different developmeethods
can be derived from the methodology described here. One tadim
ferent language platforms, hardware technologies andimgigidus-
trial tools in order to achieve flexibility and adaptabilityalso present
some of my fundamental results in incorporating memoryalaes into
Tempura. The well published system for compositional wetfon and

refinement is also given for completeness.

3.1 A Strategy for Codesign

The process of modelling a system, albeit sequential orwoaut, timed or untimed,
needs a suitable computational model. | take the view thangpatation defines math-

25
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ematically an abstract architecture upon which applicatiwill execute. Asystems a
collection ofagents(which is my unit of computation), possibly executing comeatly
and communicating (a)synchronously via communicatiokslirBystems can themselves
be viewed as single agents and composed into larger sys&mtems may have timing
constraints imposed at three levels; system wide commuaicdeadlines, agent dead-
lines and sub-computation deadlines (within the companadf an individual agent).

At any instant in time a system can be thought of as havingguasitate The system
state is defined by the state variables of the system andofarucrent system, by the
values in the communication link€omputations defined as any process that results in
a change of system state. An agent is described by a congutaliich may transform a
private data-space and may read and write to communicatike dluring execution. The
computation may have both minimum and maximum executioagirmposed.

It is important to note that when | talk abosysteml do not make any distinction
between software or hardware. | simply talk of a seagéntscollaborating to achieve
the desired behaviour. Some of those agents may be readisiddlemented) in software
and some in hardware.

Fundamental to my proposed investigation is that a syrgheesd design methodol-
ogy should start with a high-level abstract specificationciidescribes the desired be-
haviour(s) and interface(s) of the system under consieratl he target system is derived
via design decisions made througbrrectness preservingfinement steps. My proposed

development methodology is depicted in Figure 3.1 below.
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Figure 3.1: The Development Methodology
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The design process begins with a high-level abstract spatidn written in Interval
Temporal Logic (ITL) depicted in Figure 3.1 as Step 0. Prtpsrof interest can beom-
positionallyverified using the ITL's compositional proof rulesassumption/commitment
style (see section 3.2). At this level | make no distinctietween software or hardware.

Using a sound refinement calculus, the ITL specification &&m e refined into a
set of Tempura modules (an executable subset of ITL) andatediand analysed (using
Tempura, a part of the ITL Workbench). During this processious design decisions are
made, for example synchronous vs. asynchronous or segbesitparallel (Step 1).

This is followed by a ‘module analysis’ phase in which a setjgantitative and sta-
tistical data may be obtained (in [66] various techniquesgwen which can be utilised).
The result of this phase is a partitioning into two clustédnfniodules, namelyfempura-H
for the hardware part antempura-Sor the software part. These are best realised in hard-
ware and software implementation, respectively. The fate(s) between these clusters
will depend on the target architecture and in turn can bdigdrcompositionally using
the ITL proof rules (Step 2).

The hardware and software parts are then refined into balraVispecification and
a program in any HDL or programming language respectivelgeasStep 3. | mention
Handel [41, 76] and Verilog as possible HDLs and C/C++, Jawh &da as software
languages. Based on the particular choice of language ahddgy, my methodology
can be reduced to a particular design method.

At last, Step 4 of my methodology is dedicated to the comipitgphase of the devel-
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opment. Once the RTL description of the hardware is achielve@in use commercially
available synthesis tools and produce a netlist which #ft#ris being implemented into
real piece of silicon. The corresponding step in the so#vimanch has not been depicted

for simplicity and to emphasise my focus on the hardware ldgveent.

The methodology given above can be specialised into sed#éfalent design meth-
ods. All of them share the steps from Step 0 to Step 2. At Stega8 thoose several pro-
gramming and hardware description languages. Each plarticiethod would specialise
into the preferred design techniques that will depend oretdwihg hardware technology,
language support and available expertise. For examplehibiee between Handel and
Verilog may depend on available synthesiser tools, whigediioice between C and C++

could be based on the need for object oriented support insigial.

As depicted in Figure 3.1, the abstraction gaps existingvéen Behavioura] RTL
andGate levelsnust be bridged using sound refinement/transformatiors rutes fairly
easy to define the refinement relation, and therefore deragtipal refinement laws as
per section 3.5, for the transition between ITL and Tempuneesthey both have common
semantics. For example, $ipec is a specification in ITL and’; is a Tempura program,
then

Spec C Pr, iff Pr O Spec.

Similarly, for the transition between Tempura and Verilag, well as between the

different abstraction levels within Verilog itself, a uyitig semantics based on ITL for the
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various notations, i.eBehavioura] RTL andGatenotations, is needed. Such a unifying

semantics is detailed in chapters 4 and 5 for my chosen HDiloger

Several applications aromputebound as opposed wwontrol bound, i.e. the com-
putational complexity of the algorithms used in these agpions grows in orders of
magnitude with respect to the input size. For instance tBel3screte Cosine Transfor-
mation (DCT) algorithm, widely used in many signal and imagacessing applications,
is of O(N*) complexity for input sizes of(N?) (for some size parametéf). Regular-
ity in computation is a characterising feature prevalent inyrarthese algorithms. A
model of computation that is well suited for efficient implemation of these algorithms
is thesystolicor pipelined-parallelisn(see section 7) computational model. The nature
(regular) and type (fine-grain) of parallelism in this monhekes it particularly suited for
implementing algorithms as hardware components [58]. Asfi@mation algebra exists

for systematically synthesising these components frorh legel specification [50].

Using sound refinement/transformation rules, the modulabe Tempura-Sluster
could be transformed into software components written ipybar languages, such as
Java, C or C++. Similarly, modules in tAi@mpura-Hcluster are further refined into a
hardware description language such as Verilog. AltereititheTempura-Hcluster may
be refined to Handel modules which subsequently compiledtists (through hardware
compilation technology). As depicted in Figure 3.1, refieamcalculi may be used to

bridge the gap between the various abstraction levels settexhnologies.
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3.2 Underlying Formalisms

As underlying logic | choose ITL [65, 63, 64]. My choice is bdsmainly upon the
following reasons; it isimple flexibleand has amxecutable subseiving the basis for
both formal proof of the validity of the system design as vaslsimulation, animation and
rapid prototyping in Tempura [64, 93]. Furthermore, ITL laasomplete proof system for

both its finite and infinite parts of the logic [62, 60].

A very major advantage of ITL is the ability to reasoompositionallyabout spec-
ifications via assumption-commitment pairs [65]. This akome to specify and prove

compositional properties of the system in a practical way.

My formalism has to be dual in the sense that | do not only neegpécify a system
but | also need a framework into which | can reason about behes; including unde-
sirable behaviours and avoiding them, as well as a framewbokwhich | can execute,
animate and simulate my specification. Therefore, | will ldewhen reasoning about
and proving properties of my design while my main specifaratxecutable language
will be Tempura which, being a subset of ITL, has formal seiicarand can be both

viewed as a programming language and logic.

However, the differences between ITL and Tempura, inheiitg the executability
of the later, command certain excess in our exposé. | wdkent here the syntax and
the semantics of both despite Tempura’s appurtenance Tht@hd | shall justify this

approach by the differences in the basic operators of thdaaguages.
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3.3 Interval Temporal Logic

As | mentioned earlier, my proposed approach is based ongéediogical framework
whose underlying logic is Interval Temporal Logic. In thex#on | give an introduction
to ITL, its syntax and formal semantics. For further reacing many practical examples
| will refer the interested reader to [65, 63, 64, 93, 62, 60].

Interval Temporal Logic (ITL) is a flexible notation for bopinopositional and first or-
der reasoning about intervals (behaviours) found in dpsoris of hardware and software
systems. It can handle both sequential and parallel corigosinlike most temporal
logics. It offers powerful and extensible specification @ndof techniques for reasoning

about properties involving safety, liveness and timeknes

3.3.1 Syntax of ITL

The syntax of ITL is defined in table 3.1 whetes an integer valuey is a static variable
(does not change within an interval),is a state variable (can change within an interval),

v a static or state variablg,is a function symbol and is a predicate symbol.

| Expressions e == pula|Algle, ... €) |
| Formulae f:= pler,....en) [~f | finfo|Tve flskip] fi;fa]

Table 3.1: Syntax of ITL

With these operators | can define the usual temporal operato®> andO, and the

Tempura construcsmpty, if then else, etc.



CHAPTER 3. A Unifying Methodology for Codesign

e the predicatestrue = 0 = 0 andfalse= —true.

e disjunction, implication and equivalencg: v fo = —(—f1 » = fa),

fi D fe=-fiviandfi= fo=(fi D fo) A(f2 D fi).

e If-Then-Else:if fy then f; else fo = (fo r f1) v (= fo A fo).

e universal quantificationvv « f = —3Jv « —f.

e next, more and empty® f = skip ; f,

more= Otrueandempty = —-more

e chop-star:f* = empty v (f A more) ; f*.

e infinite and finite:inf = true ; falseandfinite = —inf.

e sometimes and always: f = finite; f andOf = ~O—f.

e some subinterval, some initial subinterval, all subindéésymostly and keep:

& f = O(f;true),

& f = f;true,

B f=-(ef),

f =0(more > f)and

keepf = &(skip D f).

e final state:fin f = O(empty D f).

33
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For example, in an interval, if the variablealways equals 1 and in the next state the

variable.J equals2 then it follows that the expressidn4- J equals3 in the next state:

Ol =1)a0J=2) > OI+J=3)

Many more examples can be found in [64] as well as in later iehapvere | show how |

use ITL and Tempura to specify and reason about Verilog progr

TypesinITL

There are two basic inbuilt types in ITL (which can be givemepset-theoretic defini-
tions). These are integets (together with standard relations of inequality and edqupgli
and Booleant(ue andfalsg. In addition, the executable subset of ITL (Tempura) has th
basic type vector (see table 3.2).

Further types, including reals and matrixes, can be bwithfthese by means of and
the power set operatdF, similarly to the method adopted in the specification languag

Z [40].

3.3.2 Semantics of ITL

Every ITL formula is evaluated over a specific time intervalieh is simply an (in)finite
sequence of states. Each state represents a mapping béwesen of variables and their

values, i.e. the state is a snapshot of the values of the gt ghriables. So let me assume
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an intervalo with consecutive states,, o4, . . ..

Informal Semantics

There are two main categories in ITL, namelypressiongandformulas Each constant
and static variable of any type keeps its value avewhile state variables of any type
may change.

All formulasare evaluated over the whole interval. For examfle, f5 is true over
o, Iff f; andf, are true over. Similarly 3 represents the existential quantifier.

More interesting arskip, “;” and “*”. While skip is true over every interval with two

Y

states, there are three cases wlienf, could be true oves.

1. o is a finite intervaloy,...,0, and it can be split into two subintervaig =
oo, ...,0r ando” = oy, ..., 0, sharing the common state for some) < k < n

and f; is true overs’ and f; is true overs”.

2. oisaninfinite intervaby, . .. and it can be splitinto two subintervals= oy, . .., o}
ando” = oy, ... sharing the common state for some0 < k and f; is true over’

and f5 is true overr”.

3. gis aninfinite intervaby, . .. and f; is true overo.

For “*” | will say that it is the repetitive enclosure of™and therefore there are again

three cases for the truth value pf overo.
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1. o is afinite intervaby, ..., o, and it can be split into finite number of subintervals
o) =0y, ... 04, Where the firstindek, = 0, the last index is, and0 < k; <

kj+1 < n, sharing the common states, for all k; and f is true over alb ().

2. o is an infinite intervaby, . . . and it can be split into infinite number of finite subin-
tervalso) = oy,,...,0y,,, and0 = kg < k; < k;4, sharing the common states

ox, forall 0 < k; and f is true over all-\?).

3. gisaninfinite intervaby, . . . and it can be splitinto two subintervals= oy, . . ., 0},
ando” = oy, ... sharing the common state for some0 < k and f* is true over

o’ andf is true overs”.

Formal Semantics

In the text below, | willassume that tt and ff are the truth #melfalse values; is the func-
tion that corresponds to the functional symbaindp is the predicate that corresponds to
the predicate symbols | also writec ~, ¢’ if the intervalse ando’ are identical with
the possible exception of their mappings for the variabénd | denote the length of

with |o|.
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o M,[-f] = ttiff M,[f] = ft.
o M,[fi N fo] =ttiff M,[fi] =ttandM,[f.] = tt.

o M,[Tv « f] =ttiff for someo’ s.t.o ~, o', M,/ [f] = tt.
e M,[skip] = ttiff |o] = 1, i.e.0 has length 1.

o M,[f1; fo] = ttiff (exists ak, s.t. M, . [fi] = tt and (¢ is infinite and
Mo, [f2] = tt) or (o is finite andk < |o| andMok__,U‘g‘[[fQ]] = tt))) or (o is infinite

and M, [ f1]).

| would like to note here that the essential operator “chigp=-3s expressible, i.e. | can

infer its formal semantics from the definitions above.

3.4 Tempura

As it will become clear later in chapter 4, Tempura, beingiattsubset of ITL, is expres-
sive enough for the purposes of Verilog’'s semantics. | wiledghere the syntax and the

formal semantics of this executable subset.

3.4.1 Syntax of Tempura

The syntax of Tempura is defined in table 3.2 wheres an integer valueg, a,, etc.

are integer static variables (don’t change within an irdgnA, A;, etc. are integer state
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variables (can change within an interva#| is length of a vecton, b,, etc. are boolean
static variablesB, Bj, etc. are boolean state variablgss a predicate symboal, /;, etc.
are vector static variableg, L, etc. are vector state variablés,, . . ., ¢,] is a vector of

n expressionsy|[s| is an element of a vectar,can be any static or state (including scalar,
boolean or vector) variable, is a function symbol with scalar range, is a function

symbol with vector range andis a natural value. | will usentegerandlist as synonyms

Scalar

| su= plalAlgs(er,...,en) | |v] |
| Boolean b:= b|B|empty|ple,...,e,) | =b ][ b1 by |
| Vector vi= 1| L|[en,....en | gvler, .. en) |
| Expression e:= s|b]|v|v]s] |
| Formulae f:= b|fiAfa|Tve f]skip]|fi; /o] if bthen f else f, |

Table 3.2: Syntax of Tempura

for scalarandvectorhenceforth. Also, when | talk about variable | will undersieboth
integer and list variable.

Any boolean expression issdateformula. In Tempuranegation”—" is defined over
state formulas only. The operatarhpty” is a special state formula.

The current Tempura tool [93] includes some other congtrigstinput, outputand
constructs forandomnumbers which we will omit here for simplicity. | will denotbe
language of Tempura defined by table 3.2 with . Many interesting operators can be

expressed with this minimalistic basic set. Some of them are

e operator next over formula&: f = skip ; f.

e operator next over expressions: = Oe, iff 3z « X =z A O(x = ¢) whereX and
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x are state and static variables respectively.

e operator if-thenif b then f = if b then f else true.

e operator moremore= —empty.

e operator weak next over formula@y = if morethen O f.

e operator weak next over expression§s:= @e, iff 3z « X = z A @x = e) where

X andz are state and static variables correspondingly.

e unitassignmentX :=e¢ = (OX) =e.

e operator alwaystf = f A ®@Of, & f = 0O(f ; true).

e operator keepkeep f = R(®f).

e operator getsX getsY = keep(X :=Y).

e operator eventually in Tempurab = if b then true else O®b. | would like
to emphasise here that the definitionsCoin ITL as given in section 3.3 ané in
Tempura are very different. In generd}, captures finite intervals only, whil®

includes the infinite behaviour as well.

e operator infiniteinf = ®false

e operator whilewhile b do f = if b then [f ; (while b do f)] else empty.

~

e operator iteration, also called “chopstay™ = if morethen (f ; f*) else empty.
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e bounded universal quantifievy < s« f(v) = f(0) A... A f(s—1).

Similarly, | can give several useful constructs on lists.

e concatenation:, = Ly + Lo, iff |L| = |Li| + |La| A Vi < |Li| + |Le| » if i <

|L1| then L[i] = Ly[i] else L[i] = La[i — | L1]].

e sublist: R = L[Sl..SQ], iff if (0 <81 A8 <89 n 8 < |L|) then {|R‘ =Sy —S1 A

Vi < (52 — 81) . R[Z] = L[Sl +Z]}

e head and tailL = [a|R], iff |[L| =1+ |R|ra = L[0] n R = L[1..|L]].

It turns out that the primitives given in table 3.2 can getesearich set of constructs turn-
ing L into ageneral purpose programming language with sound semanggamples

can be found in [93, 64].

3.4.2 Semantics of Tempura

The formal semantics of; can be easily derived from the ITL semantics given in sec-
tion 3.4 and [93, 64]. Here | will restrict ourselves to thetpaf L that are not covered

there, i.e. length of a list and list member selection.
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3.4.3 Tempura with Memory

Having in mind that | will have to reason about memory, i.aisters in hardware, |
will need an appropriate formal concept that can grasp tbpegsties of, and will be my
abstraction formemory | recognise the fact that ITL and Tempura do not hanemory
variablesin its basic syntax and semantics. Research [32] has pointethe need for
framing in ITL which would have solved this problem. As it hiasen shown before,
framing is generally considered a difficult issue so | neadething quicker and easier to
suit my purpose. | will denote these memory variables asvdl|A, 5, V, etc.

For each memory variable of tygé | will have a normal state variablé of the same
typeT holding the value ol and a normal boolean state variahlev,, which would tell
me if V has changed its value in the transition between the lastrendurrent state.

Typically | would want to use formulas like

3.1 Ve (finf2)

where) is a memory variable shared between the parallel formfjlasd f,. Basic mem-
ory property is to keep its value unless it has been changditily via an assignment op-
erator “=". Normal Tempura variables do not have this feature andraretb change at
any state where they are not given a value. For example,deresn interval of three states
namelyo = oy, 01,02 and aformuladV « (V' = 0 A skip);skip; (V' = 0 A empty) which

evaluates to true over. Obviously,V’s value is bounded to 0O in stateg ando, while in
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contrast itis completely unspecified and freein The obvious way to solve this problem

is to use Tempura’s construstiable V' =V getsV asindV « V = 0  stable V. How-
ever, this is correct only it’s value is not allowed to be changed by a parallel process.
In the case of (3.1) though, | cannot ustable V within f; or f, because’ is shared
between the two concurrent formulas and each one of them heyge)’s value at any

point.

Fortunately | am able to transform (3.1) into a classical fétmula. My strategy is
to enrich the Tempura syntax by adding a new type of expressie. any memory vari-
able is now a valid expression and the existential quantifieain quantify over the new
memory variables. The language 6§ with this new type of expressions and formulas

will be denoted a1+ .

The next step is to use Hale’s mechanism “inertia” and folhg§32] | define a trans-
lation from a formulaf with a memory variabl®’. For every such variable | will introduce

two state variable® andnew,. Now | can transforny into

(3.2) IA «p(V,V, A, f) n O(A = @newy) A O(if =A then (V = @V)).

In this context,f[V/V] means/ substitutes’ into f andstate stands for a state formula.

oV, V, A, state) = state[V/V]
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SV V, AV =€) =A==V =e[V/V]) AV :=e[V/V]
SV, V,AV :=¢) = A =falsen V' := e[V/V]
$(V,V, A, skip) = A = falsen skip
oV, V. A, fi; f2) = o(V. VA, f1); 0(V, V. A, f)
&(V, V, A, if bool then f, else f,) Zif bool[V/V] then ¢(V, V, A, f,)
else (V,V, A, fy)
SV, V,A, TV« f) = A =falsen 3V « f
SV, V,A, TV« £) 23V« ¢(V,V, A, f)
SV, VA, fin f2) 2 3ALL Ay oO(A = Ay v Ay) # 6(V, V, Ay, 1)

oV, V, Az, f2)

After the definition of the translation, | will show that the sonstructed memory variables
do have the basic “memory” property | needed, i.e. | can dacitepm as an abstraction
for memory. In the following theorem | will assumé as a primitive predicate with the

appropriate semantics.

Theorem 1 If V is a memory variable, then

(skip A true= Onewy) = (V#OV=V £0V)

Proof (Theorem 1) | will start the proof by transformirgiip » V # OV following the
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definition above.

Jx, A Ay, Ag eskip A O(A = Ay v Ag) nx #V A [(Ay = falsen skip) ;2 = V] A

O(A = ®@newy) A O(if =A then V = @V)

Expanding the. . .| brackets leads to

Jx, A; Ay, Ag eskip A O(A = Ay v Ag) A Ay =Tfalserxz #V A (skip;z=V) a

A = Onewy A if =Athen V = @V

Now | have to remember th&f # OV = 3z « x # V a (skip ; x = V), therefore | can

transform further

Sk|p AV # OV A ElA, AhAQ ° D(A == Al \% Az) A AQ = false/\

A = Onewy A if “AthenV =@V

and if | mark

F=3A,A1, A « O(A = Ap v Ay) n Ay = falsen A = Onewy a if A then V = @V,

then | can write finally

skipaV#AOY = skipaVAOVAF
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Now | will look at F'

true=Onewy, DO F=3A A;,Ay«0A=A;vAy)rA,="Falser A =true

= true

Alternatively,

false= Onewy, D> F=V =0V

and therefore

true=Onewy DO SkipaV#OV=skipaV #0OV

while

false= Onewy, D sSkipaV#OV=skiprV #0OV AV =&V = false

From this | can conclude the theorem. [ |

The theorem shows that theew,, always picks up the states whevehas changed
value, i.e. an event. Also, the equivalence stated by ther¢ine guarantees that if the
value ofV is not explicitly changed, then it will stay the same, i.eddes memorise the

value.
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Before | go further | would like to make the important remahnktt the semantics of
L1+ is expressed irlCr , i.e. Lr+ is a syntactical extension only which preserves the

complete axiom system given in [62, 60].

3.5 Compositional Verification

In order to support system development in an optimal waycrif@son techniques for
models of specific system views must be intuitively underdsdle and be precise enough
to ensure an unambiguous and consistent description ofyfters. In addition, such a
technique must beompositionahllowing the modular description and verification of the
system.

Compositional verification is provided through@ssumption-commitmestyle frame-

work. The following implication illustrates the use of sustigle with a systendys:

w A As an Sys D Co afinw'.

This states that if the state formulais true in the initial state and the assumptidnis
true over the interval in whiclfys is operating, then the commitme@b is also achieved.
Furthermore the state formudd is true in the interval’s final state or is vacuously true if

the interval does not terminate.

In general, the assumptiots and the commitment’o can be arbitrary ITL formulas.
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However, when reasoning about a system built out of secplgrdits, it is advantageous
to consider certain kinds of assumptions and commitmenishwiadily lend themselves

to suitable proof rules.

More specifically, | require thats and Co be respective fixpoints of the ITL operators

@ and “" as is now shown:

As=@As | Co= Co" .

The first equivalence ensures that if the assumptiens true on an interval, it is also
true in all subintervals. The second ensures that if zero@ersequential instances of

the commitmento span an intervalC'o is also true on the interval itself.

The temporal formul&(K = 1) is an example of a suitable assumption while some
formulas such astable K can be used both as assumptions and commitments as these
are precisely the fixpoints of the ITL operateep. For assumptions and commitments

obeying the above, the following derivable proof rule isrstu

w A As A Sys D Co afinw'

(3.3) w' A As A Sys’ D Co afinw”

w A As a (Sys; Sys') D Co afinw” .

Here is an analogous rule for decomposing a proof for zerooveterations of a formula
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Sys:

waAs A Sys D Coafinw
(3.4)

wA As A Sys® DO Confinw .

Compositional reasoning abditenesss also possible.

3.6 Formal Refinement and Analysis

3.6.1 Refinement Calculus

The transformation process in each step (see Figure 3.ayexkon a refinement calculus
that allows me to systematically calculate the desirecesystescription. The refinement
relationC is defined on a system: A systelhis refinedby the systeny’, denotedt C ),
ifandonlyif)y > X. Asetofsoundrefinementlaws have been derived [13] tofioams
an abstract system specification into concrete systems.

Two observations are in order:

1. Once | have completed the formal specification phasegwaproperties could be
proven about the specification itself. This can provide anaeassurance that the

final specification meets the required informal requirerment

2. At each refinement step, | can simulate the resulting system. This gives some

guidelines on the choice of the subsequent refinement rules.
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The following basic law states that the operators in ITL aenatonic with respect to
the refinement relation. Monotonicity means that the ITL@finent calculus is compo-

sitional.

Law 1 (Monotonicity)

Let f; be an ITL formula then

(E-1) If f/oCT fiand f1 C fo then fo T fo

(E-2) If foCT fi and fo T f5 then (fo A fo) T (f1 A f3)
(E=3) If f/o& fi and f2 T f3 then (fo v f2) C (fi v f3)
(E—4) If A C fo then fo; fi T fos fo

(E=5) If fiC fa then f1; /o E fa5 fo

(C—=6) If fo T fi then f5 C f;

(C=7) If foC fi thenYv - fo C Vv - fi

Following are some useful refinement rules for refining ITedgfcations into Tem-

pura code. The conditional is introduced with the followmge.

Rule 1 (If then else)

(if =1) (for f1) v (=fo A f2) C if fo then f; else fo

The following rules describes the characteristics of thregpatonstruct (). Chop has

empty as a unit, is associative and distributes over nondetestigrchoice and condi-
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tional

Rule 2 (Chop)

G—1) empty;f = f = f;empty

G=2) (fisf)sfs = fii(faifs)

G=3) fis(favfa)ifa = (fuifesfa)v(frsfsifa)

(G—4) (f fothen frelse fo); f3 = if fothen (fi; f3) else (f2; fs)

The following rules introduce the while loop and the nomtarating loop

Rule 3 (While)

(Whlle —1) (fo A fl)* Afin—fy C while fydo f;

(while —=2) ff C ffainf = while truedo f;

The following are some rules for the parallel construct

Rule 4 (Parallel)

(A=1) fornfi = firfo
(n=2) fonl(fivfe) = (forfi)v(fonf2)
(A=3) (forfi)nfe = for(finf)

(n—4) (if fothen frelse f2) A f3 = if fothen (f1 A f3) else (f2 A f3)
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3.6.2 Analysis

Fundamentally, | can use the approach given in [88] to cepyvossible behaviour of a
running (sub-)system. Once the behaviour is captured tiean hssert if such behaviour
satisfies a given property, i.e. runtime validation andingstAnd as a property is a set
of behaviourssatisfactionis achieved by checking if the captured system’s behaviour
is an element of this set. | am not dealing here with the foveafication of properties
which requires that all possible behaviours of systemfyatie properties. | am only con-
cerned with validating properties which requires that dntgresting behaviours satisfy
the properties.

The states of a (sub-)system to be analysed are capturegdayingassertion points
at suitably chosen places. These divide the system intoaeade-chunksProperties
of interests are then validated for this behaviour.

The general framework for analysis can be described asasllo

1. Establish all desirable properties of the system undasideration and express

them in Tempura.
2. Identify suitable places in the code and insert asseatijooints.

3. Using Tempura, check that the behaviour satisfies theadegroperties.

Establishing system properties can be a hard task, howestgrgest to follow the main
characterisation of properties given above, namely sdfegness and timing properties.

Obviously, some level of understanding of the (sub-)systexier consideration is as-
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sumed. These properties could be invariants that need tudeat all levels of system'’s
abstraction.

The locations of assertion points could be chosen, for ex@nmapthe entry and exit
points of a procedure or function. In this case assertioasrafactpre- andpost-condi-
tions, and what | am asserting is: If the system starts ate s#disfying thgre-condition

then it terminates properly in a state satisfying plost-condition.

Tempura

System to Analysée— Server | |
1 ——e Resul

s

|

_ } Tempura
Properties —* Interprete

Figure 3.2: Basic Functions

| can use the existing tool Tempura [88], that supports theaach described above.
Figure 3.2 shows the general structure of the tool. The spre the system description
(either source code plus assertion points or an ITL spetigitaand the properties |
want to check. The result of the analysis is whether the ptgsehold for the system.
Optionally the behaviour of the system can be animated. edtlyr the tool can analyse
C, Verilog and Tempura programs. The tool is available fr@&3] pnd several examples

of the tool in action can be found in [12, 88].



CHAPTER 3. A Unifying Methodology for Codesign 53

3.7 Summary

| presented my overall strategy for codesign in this chaptentegrates (co-)simulation
with formal verification and refinement. Assumption/comment pairs of formulas form
the base of my methodology and this allows me to achieve dyhaimpositional for-
malism.

The foundation of my work is ITL. | give here the formal syntamd semantics for
both ITL and its executable subset Tempura. | also arguedhd for memory variables
in ITL and Tempura and | propose a way to introduce such veesaib the formalism. |
also prove Theorem 1 which formally supports and justifiesabnstruction of memory
variables.

Also, | justify the claim that ITL has some powerful compasital expressiveness
through assumption/commitment pairs. | give some comjposit proof rules 3.3 and 3.4
and | show how they could be employed to prove some imporitzréss properties.

| choose stepwise refinement [13] as a major vehicle for dgweént. It is well pub-
lished and | include it here for completeness reasons.

Simulation and analysis are tightly integrated in my metiogy. | present the basic
functions of the Tempura tool with a general view of how it kcbbe used to test for the

validity some important properties.



Chapter 4

Denotational Semantics for Verilog

After justifying the need for an ITL based semantics for Magiin the
previous chapters, here | discuss the details of constigistich a se-
mantics. | define a powerful and expressive core of the HDLIayike

the translation between Verilog aud-+ .

4.1 Introduction

The need for a formal and well founded semantics of a progriagnor hardware descrip-
tion language is widely accepted. | will consider two typésuch semanticsDenota-
tional andOperational They reflect the duality of the usage of programming or hargw
description languages, i.e. | need to both desqpilopertiesandmachinesvhich imple-
ment, or compute, these properties. This chapter treatdehetational semantics and
Chapter 5 defines the operational semantics of Verilog.

54
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It is a widely accepted that properties are best reasonedt abdenotational terms
and machines are best described by operational means. @gtgtle correspondence be-
tween the denotational and operational semantics guastite uniformity of my formal
reasoning and boosts my confidence in the trustworthinesg/afork. The proof of the
equivalence between the two semantics is given in chapter 6.

Modern hardware design is largely based on using HDLs ané ormave the se-
mantics of the HDL, formal verification comes within my readly approach to hard-
ware/software codesign facilitates some existing teagiek for hardware synthesis based
on Verilog HDL. The transition between &WPURA-H specification and a Verilog spec-
ification (see figure 3.1 on page 27) must be based on sounmidgeehsuch as refinement

and the definition for the refinement relation must be

(4.1)  SpecTempura-H E SPecverilog: Iff SPecveriiog 2 SPecTempurA-H

Obviously, the need for a sound definition of the last imgil@adrives my desire for

denotational, ITL-based, semantics for the Verilog HDL][21

4.1.1 \Verilog Specifics

Current HDLs raise considerable difficulties in understagdheir semantics and Verilog
is a typical example. There were several attempts [67, 30390for different styles of

semantics for Verilog in the literature. Most of them compise with the complexity
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of the language, others choose to use several differentrd@mdor different levels of

abstraction. There are two main reasons for the lack of fbseraantics of Verilog.

Concurrency Unlike most of the software, hardware is naturally conauirrén a hard-
ware system all subsystems work in parallel and this levgaoéllelism must be

matched by the HDL of choice.

Reactivity Again in contrast to the software, hardware is reactive. Whele computa-
tion in hardware comes as a reaction to changes it the emagon Therefore the

notion of event is explicit in hardware design.

Of course, there are some language specifics suetead cancellatioyblockingvs non-
blockingassignment as well aontinuous assignmenthich has earned Verilog a repu-

tation of adirty language with hard semantics [30].

4.1.2 Semantics Gap within Verilog HDL

As is well known, one can use several abstraction levels wlegaloping a system in Ver-
ilog HDL. The Verilog Formal Equivalenceroject at Cambridge has been concentrating
on different semantics for the different abstraction IsvelVerilog [94, 30]. This differs
from my work since | obtain ainifying semantics for the language. A major benefit of
that is my ability tocompositionallyrefine high level ITL specifications down to the RTL

subset of Verilog.
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Sagdeo and Thomas in [71, 80] give detailed design flows wiherenain stages are

the following two:

1. Behavioural desigr— In a behavioural design one uses procedural construdts suc
asbegin-endblock, always statemeneventcontrol and so on. The general syn-
tax of a behavioural specification includegial andalwaysstatements, as well as
functionandtaskdeclarations. Since the declarations are instructionsea@om-

piler only, | would not consider them here.

2. RTL design— RTL is a restricted subset of Verilog HDL. Data structutesttcan
be continuously driven and statements that continuoustye dhem can be used.

Only continuous assignmestatements are RTL statements.

A third abstraction level is included in [71, 80], nam&hate Level Verilogr Structural
design The reason | do not consider structural descriptions isthi@sie are commercially
available synthesis tools which transform RTL down to s&tland this step has already
been automated, via several commercially available sgigbes.

The restrictions imposed on RTL specifications imply thgthesisability. However,
behavioural descriptions, including event controls amghevel language constructs, are
generally not synthesisable.

According to the design flow given in [71], designers havertmsform theBe-
haviouraldescription intdRTL using their intuition and expert knowledge. At every step

of the design process, simulations and tests are perforonglteck the correctness of the
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transformations with respect to the requirements. Althotingse tests can be automated
to a considerable degree, there are many cases when testindags not provide the
necessary level of correctness. More often than not, driesa cases are overlooked
which, in the case of critical systems, may result in humagsliand/or money being lost.
Probably the Pentium floating point flaw has the highest groflccording to [10, page

19] this error cost $475 million.

4.2 Syntax of Verilog

Here | define the syntax of the language | consider. Only afudonticonvenient but non-
essential constructs, such as function and task declasatwe not considered here. All
constructs are given in Backus-Naur Form (BNF) style dpsion and{. ..} denotes a
non-empty repetition anolool is a boolean expression. Because of the specifics of Verilog

| consider two syntactic categories namsigtemenandatom

statement ::= empty| n | block assign| non.block assign|
eventtrigger | if | while | beginend
empty :=¢
n == Q (e_exp) | # exp
block assign::= v =mnexp| v =exp
nonblock assign ::= v <= # exp; exps | v <= exp
eventtrigger ::= — event
if ::=if (bool) statement else statement
while ::= while (bool) statement
beginend ::= begin {statement;}* end

Table 4.1: Syntax oftatement
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A statement is one of the sequential statements of Verilog. These asgatments
one may find in aeginend block for example. All statements are given in table 4.1.
Theree_exp is a boolean expression over event variabtes,is an expressiorhool is
a boolean andvent is an event variable normally declared é@gnt e; in a Verilog

program. The notation for time delays and event controltaisdard.

atom ::= assign| always| initial
assign::= assign v = exp ] assign # exp; v = exps
always::= always statement

initial ::= initial statement

Table 4.2: Syntax ofitom

An atom is the smallest unit of parallelism in Verilog. These are toatinuous
assignment, its delayed counterpart, always and initiattacts. Both Behavioural and
RTL language constructs are included. Typically a Verilaggpam is a collection of
atoms with appropriate variable declarations. All atoms iru parallel and share the
variables as well as a common clock. With no loss of gengrale will accept the

following general syntax of a Verilog program.
program ::=module name (x);
global variables;

atomy;

atoms;

atomy,;
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endmodule

Herex is a shortcut for, ..., v, and the Verilog operator;” does not have the same
semantics as the ITL chop but it is merely a statement separdhe following is an
example of a Verilog program. | will come back to this progremsection 4.3.4 where |

will give its translation intalr+ .

program ::=module example ;
reg[3:0]a,b,i;
wire [3:0] v;
assign#5v=a-+b;

always begin

#10;
a <= #1b;
b <= #la;

end

initial begin

b=20;
a=3;
i=0;

while (i < 10) begin

#15;
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b=>b+1;
i=141;
end
end

endmodule

4.3 Mapping Verilog onto L+

| define a function that translates Verilog constructs iife+ equivalents, hence giving
semantics for Verilog. The obtained semantics follows datative style. The language

of L+ is Tempura enriched with memory variables (see sectio33.4.

Definition 1 If statement is a valid Verilog statement, theffstatement || gives its

L+ equivalent.

Suppose | have a Verilog specification. It defines a set of swaith their variable

declarations. Let the following be a Verilog program.

program ::=module name (x);
global variables;
atomy;

atoms;
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atomy,;

endmodule

Our general idea is to translate all atoms igtp+ formulas and combine them with the
“A” connective. In doing this, | will have to bear in mind thataverilog program implic-
itly assumes several other properties such as a clock anthlnoking event scheduling,
which I will have to explicitly specify as additional parallatoms. Therefore, | will need
to assume that all variables appearing in the left-handafidenon-blocking assignment
arez,,...,x,. For each variable; and each individual atomtom; wherex; appears
in such non-blocking assignment | will need a parallel at¥if;;,,,,, and a memory list

variable of non-blocking assignment evesfs,,, .

[progran || =
JdAtom, .active, . . ., Atom,,.active,

Global Variables, Disable,

1 Tm

Tlmev atomy * * * ~atomy ¢

Global Variables = L a clock(Disable)  inf a
O(Disable = (Atom,.active v ... v Atom,.active)) a

|latomy || A ||atoms]|| A ... A ||atomy,|| A

NB*! A...AN NB*

atom; atomy,
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| will simply use this specification as illustration only alader | will give a much more
precise example in section 4.3.4 of a real Verilog prograthGRobal Variables and the

T ime will be memory variables, whereas for each variablgom the global variables in
the Verilogprogram | will have a memory variabl® corresponding to it.

Atom;.active and theDisable variables are normal state variables used for synchroni-
sation andAtom;.active is a boolean variable which is true whetvom; is active. The

bottom “ L " is used to mark an undefined value.

4.3.1 Preliminaries

| will need to specify two important parts of odr,+ model. These are a clock and an

event catching predicate on memory variables.

Explicit Clock | will have an atom calle@lock which will keep the time in a global

memory variableZ ime. | will need global clock for synchronisation.
clock(Disable) = Time = 0 a
(
while (Disable) do skip;
Time :=Time + 1
)
The clock in my specification has one parameter namely tle gt@iableDisable which

synchronises all atoms. Whéwsable is true then the clock is simply doing nothing, i.e.
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its idle and waiting and some of atoms are busy working. OH@@ns are suspended,

then Disable turns intofalseand the clock advances the time.

Events For the memory variables,, . . ., £, | can define the predicate as follows

~(&1,..., &) = newg, v ... v newg,.

This predicate represents events on the memory variahelved.

4.3.2 Statement Semantics

| will start our semantics definition with the specificatiohadl statementsas given in

table 4.1.

Empty Statement The empty statementis usually neglected. However, it is very im-
portant and | need to give it a semantic meaning. Let me asthahthe: statement, being
a statement from table 4.1, is included in amtom with a status variableltom.active.

Then, | can write

lell = (Atom.active = false) A skip

Delays and Event Control Let me consider now the event control statement in Verilog,

i.e. me assume here that the declarations in the Verilogranogncludee; as variables
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and for each of them | have a memory variaBjén my £+ formula.

||/\

|@Q (ejor,...,ore,)

while = ~ (&,...,&,) do (||e]])

Of course, the event control statement must be included itt@n with a status variable

Atom.active.

Similarly, the delay statement is a part of an atom withdtsm.active variable.

1# expl| =
t e (
t =Time + exp A

while 7ime < ¢ do (||e]])

Blocking Assignment The blocking assignment has two forms and again in each one
of them | use the corresponding atom’s status variable. Hiaydd version uses the

semantics of) which shows the compositional nature of my denotationales#its.

|v = exp|| = ((Atom.active = true) A V := exp)
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|lv =mnexp| =3z« (x=expn (||n]; ((Atom.active = true) A V := x)))

Non-blocking Assignment With the non-blocking assignment, for every ataiom
and every variable appearing in the lefthand side of a non-blocking assigniriemill
create another atonv BY,,,,, which will run in parallel to the system and will have a
memory list variable of non-blocking assignment evefifs . Each non-blocking as-
signment in a normal atom will simply be substituted with afedto this list, while the

atomN BY,,,, Will simply execute this list when scheduled.

Again the non-blocking assignment has an immediate anchge@form. Each one of
them may appear in aitom, i.e. | have to take care of its status variable when updating
the event list of non-blocking assignmerdy, .. So, the following are the semantics
of both forms of non-blocking assignment which assumes thigtianal atomN B, ..,

running in parallel with the system. Later | give its spe@ifion.

|lv <= exp| = ((Atom.active = true) A

Ztom = ‘CZtom + [[szea exp]])

|v <= # exp; exps|| = ((Atom.active = true) A

v .

Atom *— ‘CZtom + [[sze + expy, 637]92“)
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As | mentioned earlier, the non-blocking assignment assunparallel atorv B, -
| have to specify such an atom for each variable appearingeitetfthand side of a non-

blocking assignment.

NBjiom = (
if Disable then skip
else (
Ytom = filter(L%om, Time) A

Vi < | Losom| * B (Lo 1][0] = Time) then V= L, [i][1]))"

and filter is defined as follows

filter(L,t) = (
if |£| = 0then []

else (if £]0][0] = ¢ then [] else [L[0]]) + filter(L[1..|L]], 1))

Event Trigger This construct is very easy. | just change the value of thealba in

someway.

| = ell = lle=e+1]
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If, While and Begin_end Block Standard semantics for these constructs is adopted for

obvious reasons. In the followind,is a boolean expression in the sense of table 3.2.

||if (b) statement; else statements| =

if (]|b ||) then ||statement, || else ||statements,|
|lwhile (b) statement|| =

while (||b ||) do ||statement||
||begin statement; ; (statement) end || =

(||statement,|| ; |begin (statement) end ||)

4.3.3 Atom Semantics

| now turn our attention to the atoms in table 4.2.

Assign As shown in table 4.2, the form of thessign statement has two forms and

here | will start with the simpler one.

Jassign © = exp(s)] 2
(O(Atom.active =~ (x)) A

(if =Atom.active then skip else V := exp(x))*)
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Informally | have twol -+ statements, namely( Atom.active =~ (%)) and(...)* work-
ing in parallel. The first one turns th&om.active variable intatrue any time when there
is a change in the variables in the expression on the righthme of the assignment, i.e.
it activates the atom at those time points, while the otheestent checks if the atom is

active and, ifitis, it executes the assignment. Otherviisiys idle and doesskip only.

The second form of thessign statement has a much more complex semantics.

H/\

|assign #exp; v = expy(*)
a7, Atom.acty, Atom.acty
(O(Atom.active = Atom.act; v Atom.acts) A
(if ~ (%) then (Atom.act; = true n T := Time + exp;)
else (Atom.act; = false A SKip) A
if 7 = Time then (Atom.acty = true n V := expy(*))

else (Atom.acty = false A SKip)

)*

Here | have three parallel statements in the semantics.nAdwive anf ~ (x) then ...
statement which watches for any changes in the variableserexpressiorxp, and

should change occurs, it switches the local variablem.act; to true and assigns new
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value to the local variabl&, i.e. it reschedules the assignment for some time in thedutu

Otherwise, it keepsitom.act; to falseand doeskip, i.e. it stays idle.

The secondf 7 = 7ime then ... statement watches the time when the assignment

is scheduled and executes it when it elapses.

The third statement i8l( Atom.active = Atom.act, v Atom.acts) which keeps the
whole atom active if any part of it is active, i.e. it synchises with the global clock and

the other atoms in the system.

Always and Initial The semantics of thelways atom isiterationwhile the semantics

of initial is a single execution.

|always statement|| = ||statement||”

With theinitial atom | only have to bear in mind one small complication. Thjs i
theinitial atom is running in parallel with all the rest and thereforeeéd its status
variable looked after even when all statements of the ateeifiare long gone. Hence
| useOAtom.active = falsesequentially composed at the end of the semantics of the

statement.

|linitial statement| = ||statement|| ; O(Atom.active = false)
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4.3.4 Example

Let me consider again the Verilog program that | introducesction 4.2.

program ::=module example ;
reg[3:0]a,b,1i;
wire [3:0] v;
assign#5v=a-+b;

always begin

#10;
a <= #1b;
b <= #la;

end

initial begin

while (i < 10) begin

#15 ;

b=b+1;

i=1i4+1;
end

end
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endmodule

For program | will construct the L+ specification which will be its semantics.
Knowing the nature of each atom | will name themuasign, always andinitial. There-
fore, their correspondingctive variables will be namedissign.active, Always.active,

Initial.active.

[program || =

JAssign.active, Always.active, Initial.active, Disable,

A, B, T, Time,
Ejlways? Cglways ¢
(A=B=T=V=_1nLYm=LAum = » clock(Disable) A

O(Disable = (Assign.active v Always.active v Initial.active))
inf A ||assign || A ||always || A |[|initial || A

r NBB

always

NBA

always

Having in mind that thelock has been specified previously, | will go straight to the spec-
ifications for||assign ||, ||always |, [|[initial ||, NB{,.,. andNBS,., . . According

to the definitions above these specification will be as follow
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Theassign atom takes care of itsctive variable Assign.active which is a global
state variable for the whole formula and is the synchrogiitk between the atom itself

and the clock.

Jassign || =
37, Assign.acty, Assign.acts o
(O(Assign.active = (Assign.acty v Assign.acts)) a
(if ~ (A, B) then (Atom.act; =true n T := Time + 5)
else (Atom.act; = false A SKIip) A
if 7 = Time then (Atom.acty =truea V := A+ B)

else (Atom.acty = false A SKip))*)

The next atom is thelways atom. It also looks after its globallways.active
variable and it sequentially composes several other behealistatements. The following

L+ specification also sequentially composes their equivalent

|always || =
(
It e (

t="Time+ 10 a
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while 7ime < t do ((Always.active = false) A skip)
);
((Always.active = true) a

Lﬁlways = Eﬁlways + [[Time + 1, B]]
);

((Always.active = true) A

‘Cglways = ‘Cglways + [[Tlme + 17 AH

Next comes the semantics for theitial atom which also is a sequential compo-
sition of several behavioural statements. Those have lraaslated inLr+ and their

semantics have been sequentially composed.

|initial || =
(
(Initial.active = true A B := 0);
(Initial.active = true n A := 3);

(Initial.active = true n Z := 3);
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while (Z < 10) do (
3t e (
t="Time+ 15
while Time < t do ((Initial.active = false) » skip)
);
(Initial.active = true n B := B+ 1);
(Initial.active =truenZ := 7 + 1);
);

) ; O(Initial.active = false)

Now | will need to turn my attention on the atoms that impletrtbe behaviour of the
non-blocking assignments. They are

A

NBalways = (

if Disable then skip

else (£A

always

= f’ilter(ﬁflways . Time) A

: A i A
\V/Z < |‘Ca1ways | ¢ If (Lalways

[i][0] = Time) then A := £, [{][1])

)*
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Of course the same stands f¥iB2

always

NBEB

alvays = (

if Disable then skip

else (Eflways = filter(ﬁflways ,Time) A
Vi < |Louags | I (Lohuays (0] = Time) then B = L3, [i][1])

)*

and the functioryilter has been defined previously.

Now, after | have obtained the denotational semanticgfogram , | can show some
simple properties about it. In the following | will use = f instead ofM, [f] = tt as

given in section 3.3.2. For example, | can quickly prove tikfving implication

~ (A,B) askip; @— ~ (A, B) »OCTime :=Time + 1 A

|lassign| DO OV:=A+B

which says that ifA or B change and then they stay the unchanged for sufficiently long
time and if the time continues to tick, then thesign statement assigns the appropriate
values to the appropriate variable. The argument is verplginiet me say that prereg-

uisite holds for an intervat. This means that in the first statg =~ (A, B) which leads
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to

oo =if ~ (A, B) then (Atom.act; = truen 7 := Time + 5)
else (Atom.act; = false A skip) =

(Atom.acty =truen T := Time + 5)

However, since in the prerequisite | also haké ; @ - ~ (A, B), | can say that for the

rest of the interval

o1,... Eif ~ (A, B) then (Atom.act; = truen T := Time + 5)
else (Atom.act; = false a skip) =

(Atom.act, = false r skip)

So, I know that; =7 = Time+5, 7 is alocal variable and it is not changed anywhere
else, i.e. its value will be stable and= OO 7 ime := Time+1, therefore | can conclude

o T =Time,i.e.
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o EO(If T = Time then (Atom.acty = true AV := A+ B)
else (Atom.acty = false A Skip) =

(Atom.acty =truen V := A+ B))

which proves the implication.

This simple exercise demonstrates that the semantics éaistiign statement in-
deed assigns the appropriate expression to the appropadtble. The usefulness of
the denotational semantics is self-evident when proestfi®/erilog programs need to be

proven.

4.4 Summary

In this chapter | have defined the syntax of Verilog HDL andvegthe denotational se-
mantics for it by translating all Verilog programs infg-+. All constructs of the language
are treated and a small example is provided. At the end | prex&@mple property about
the denotational semantics of the sample program from theple. This supports the

usefulness of my denotational semantics.



Chapter 5

Operational Semantics for Verilog

Here | present my operational semantics for Verilog and psupmy
findings with several healthiness conditions. | concludénan exam-
ple of simulation which represents a run of the operatioeatantics

over a simple Verilog program.

5.1 Introduction

As | mentioned eatrlier, the duality of a programming or haadsvdescription language
consists of the necessity for describing both propertiesraachines that compute these
properties. This results in duality of the underlying setitafor my language of choice,
in my case, the Verilog HDL. In chapter 4 | gave a denotati@®ahantics for Verilog
based onl,+ , my conservative extension of Tempura while here | will fe@n the
other aspect of the language — the operational semanticerddy. Of course, later on

79
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in chapter 6 | will show the uniformity in my two approachesgrpving the equivalence
between the denotational and the operational semantics.

Many difficult language constructs are treated in both the BehaviouraRahdarts.
The approach used allows quick expansion of the treateditayegup to the limits of full
Verilog as described in [80, 71] and beyond.

The semantics is readily implementable into a real simukatal, unlike most current
Verilog simulators, it iSully parallel which eliminates all side effects caused by imple-
menting parallelism via non-determinism in Verilog. | halso included a small example
which supports the usefulness and the practical benefit cfemantics.

The correctness of the proposed semantics is backed byatsbeatthiness conditions.
These conditions are by no means complete and can easilydredex.

A recent paper [89] on semantics for Verilog has consideredeasubset of the lan-
guage. In fact, the subset described there is smaller thhavBaural Verilog and does
not mention RTL at all.

The Verilog Formal Equivalence Project at [94, 30] studiégrent semantics at dif-
ferent abstraction levels of Verilog HDL. Although the frawork there is consistent and
sound, the differences in the semantics results in diffexeim the specification languages
and this hampers the refinement. The sub$estudied in this project is a considerable
advance including Behavioural as well as RTL constructsvéler, repeatedly | see lack
of attention devoted to very difficult specifics of Verilogdidelayed continuous assign-

mentanddelayed procedural assignment
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5.2 My Contribution

Here | consider a powerful and expressive core of Verilogiin the tables 4.1 on
page 58 and 4.2 on page 59. Only a handful of convenient buessential constructs
such ascase -like statements and function and task declarations arétexini | would
like to add here that these constructs have very trivial s¢icgand can be incorporated
easily into my framework. In contrast, all significd¢haviouralandRTL constructs are

included and this gives a solid basis for the whole languatfewo semantic gaps.

A major benefit of an operational style semantics for Veriwghe applicability of
my work as aoadmapfor a simulator of the language. The semantics describesliber
fully parallel which differs from most of the available simulaorhe Verilog simulators
“in-use” at the moment implement parallelism via non-deti@ism. This approach has
obvious side effects and all texts on Verilog strongly disege the active use of the
sequential nature of the simulators. A truly parallel ogeraal semantics to Verilog

eliminates these side effects.

As well as giving an example of simulation later, | seek raeemsce in the validity of
my work here by proving somieealthiness conditionand in addition to this | show the
correspondence between the denotational and the opeabsemantics given here. The
healthiness conditions given at the end of the chapter arobyeans complete and can

be expanded if necessary.
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5.3 Structural Operational Semantics

Following Plotkin [68] and Mosses [59] | use the notions afuStural Operational Se-
mantics (SOS) and Labelled Transition Systems (LTS) tordssthe semantics of Ver-
ilog. Conventional SOS employs LTS which in turn is a struetof a configuration set, a
set of terminal configurations, a set of labels and a trawsitlation. In my framework
we define aconfiguration and astep functiorwhich represents the transition relation.

The absence of an explicit set of terminal configurationsesgnts my belief that
hardware, which Verilog models, has no “terminal” state.mpatation in hardware is
modelled as a sequence of configurations and the sole ainachteve a “stable” config-
uration. If such a configuration is achieved, the system bitkgeps the state unchanged
(stuttering). In this sense, “terminal” configuration fartlware is equivalent to power
failure.

| also note that instead of a set of labels which determineg#msition relation, | use
two functions namely.ead andtail. Their purpose is to play the role of a parser for the
language. Fundamental to this approach is that it fa@ktat possible implementation of

this operational semantics into a real simulator.

5.4 Operational Semantics of Verilog

The syntax of Verilog was given by tables 4.1 and 4.2. Howeawehe following, | will

need yet another syntactic category, namely4nm which is needed in the technical
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Atom ::= statement | atom| statement ; Atom

Table 5.1: Syntax afdtom

details of the definition of operational semantics. In esseanAtom represents aitom
being executed. It gives me a partially completean stripped out of the statements that
have been finished.

As mentioned earlier, | need to define a set of configurations.

Definition 2 A configuration will be denoted by

(T, ((Atomy, booly), .., (Atom,,, bool,,)), V, (E, .., Ey))

where;:

T is atime variablei.e. a clock

Atom,; is what is left of tha-th atom to be executed

bool; is a boolean expression indicatingAfom; will schedule any events for the

next configuration

o V = {(variable, value, new)} is a set variables and

— variable is a name,

value 1S its associated current value and

— new IS a boolean indicating if this particular variable has a nvalue.
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e E;, = (E#, ENB)is atuple ofActiveandNon-Blockingevents for thé-th atom
° Ej = {(when,what)} afinite set of tuples representing the event and

— when is a boolean expression, a guard of the event and

— what is Verilog statement to be executed at the event.

In a configuration, the time variable and the Betorm the system’s state. It might be of
interest to mention here the intuition behind an event otyipe (when, ) which repre-
sents an empty event. For each configuration | define an netetpon of the variables,
such that|variable|| = value, where(variable, value, new) € V. This allows me to cal-
culate the expressions in Verilog. Alsp|| defines a set functioh (F) giving the set of
enabled eventsif'. Anevente € F is enabled in a configuratianiff |[when(e)|| = true
and it is disabled otherwise. | denote(E) = {ele € E A ||when(e)| = true} and
| (B)=E\1(E).

For every Verilog program with atomsom; | need to define a start configuration.

This would represent the configuration at time 0 and is asvid|

(0, ((atomy, true), ..., (atom,, true)), { L}, (0%, ...,0%)).

Here{ L } is a set of variables withundefinedvalues. It represents thevalue in a
Verilog simulator.

I will need two functionshead andtail to define the step. The functidiead gives
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me the current statement to be executed. In the followirgydefined in table 4.1.

head : Atom — {e, block assign, norblock assigny), assign }

head(e) = ¢

head(assign body) = assign , wherebody is the body of the assign statement
head(always statement) = head(statement)
head(initial statement) = head(statement)
head(statement ; Atom) = head(statement)
head(n) = 7

head(v = exp) = v = exp

head(v = nexp) = v =nexp

head(v <= exp) = v <= exp

head(v <= Fexp; expy) = v <= H#exp; exps
head(— event) = event = event + 1

head(if (bool) statement; else statementy) =
N head(statementy), iff ||bool || = true

head(statement,), otherwise

| head(statement), iff |[bool || = true

head(while (bool) statement)
£, otherwise

head(begin statement; ; {statement} end ) = head(statement,)
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When the current statement has been identified | will neednwrwe it and this is what

tail does. It simply takes the rest of th#om and prepares it for the next iteration.

tail : Atom — Atom

tail(e) = ¢

tail(assign body) = assign , wherebody is the body of the assign statement
tail(always statement) = tail(statement) ; always statement

tail(initial statement) = tail(statement)

tail(statement ; Atom) = tail(statement) ; Atom

tail(n) =€

tail(v = exp) = ¢

tail(v =nexp) =¢

tail(v <=exp) =¢

-~

tail(v <= #exp; exps) = ¢

tail(— event) = ¢

o~

tail(if (bool) statement, else statements)

tail(statement, ), iff ||bool || = true

~

tail(statement,), otherwise
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~

tail(while (bool) statement)

tail(statement) ; while (bool) statement, iff |[bool || = true

£, otherwise

tail(begin statement; ; {statement} end ) = tail(statement,) ; {statement}

The head andtail functions are in effect parserfor Verilog.

Let me now have a configuration

c = (T, ((Atomq, booly), . .., (Atom,, bool,)),V, (E1, ..., E,)).

Forc | have also an interpretatidn|| defined by the sét” and a set functiofi (E) giving
the set of enabled events i1 T (.) uses||.|| to evaluate the event guardsien(.). For

that setup | will define four step tests.

7o =1 (Uihj Ezj) =0~ V; [[bools]|

n =1 (U, El) =0 N\, —|bools]]

T =1 (UiEiA>:®/\T (UZEZNB)#@

T3 =1 (UzEzA>7£®

The step tests determine the type of each step. As it will inecolear latery, is true

in the start configuration only; picks up time advancing steps, is for the activation
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of events associated with non-blocking assignmentsramglfor the actual computation

steps.

Before | define the transition step, | will give some notatidhv; are all variables
in exp(vy, ..., v,), then | will write exp(x) instead. The special predicateis true over

variables which have just changed their values and is definddllows:
e ~ (v9) & new,, = true, where(vy, value, new,,) € V.
o ~ (Vgy...,U) &~ (Vo,. ., Upo1) v~ (Vp).
The transition step functioitep(c) must find a successor forand is defined as follows.

o If 74 = true, then

Step(c) = (T + 1, ((Atomq, booly), . . ., (Atom,,, bool,,)),V, (Ex, ..., Ey,))

o If 7, = true, then

Step(c) = (T, ((Atomy, booly), . . ., (Atom,,, bool,)), V., (E1, ..., E))),

whereE! = (EAU 1 (ENP), | (ENP))

o If 79 v 73 = true, then

Step(c) = (T, ((Atomf, booly), . . ., (Atom],, bool.)), V' (E1,. .., E.)),
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where
Atom;, if —[|bool; ||
Atom), =
tail(Atom;), otherwise
and
— if =||bool; ||, thenbool, = bool;

— if ||bool;|| A head(Atom;) = &, thenbool, = false
— if ||bool;|| A head(Atom;) = assign v = exp(x), thenbool] =~ (x)

— if ||bool;|| A head(Atom;) = assign # exp;(*1) v = exp(x), then

bool], =~ (x)
— if ||bool;|| A head(Atom;) = # exp, thenbool, = (T = ||T + exp||)
— if ||bool;|| A head(Atom;) = Q e_exp(x), thenbool, =~ (x)
— if ||bool;|| A head(Atom;) = v = exp, thenbool, = (T = ||T|)
— if ||bool;|| A head(Atom;) = v = # expy exp, thenbool, = (T = ||T + exp1||)
— if ||bool;|| A head(Atom;) = v = Q (exp;(x)) exp, thenbool, =~ (x)
— if ||bool;|| A head(Atom;) = v <= exp, thenbool;, = (T' = ||T||)
— if ||bool;|| A head(Atom;) = v <= #exp; exps, thenbool, = (T = ||T||)

In the previous, all expressions like = ||T" + exp|| are syntactic, i.e. | calculate

the constant = ||T + exp|| using the interpretatiofi.|| for the setl/, and then |

1= means “graphically equal”
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construct the string” = ¢.

| calculateV’ from V and(E,, ..., E,,). For every triplgvariable, value', new’) |

define

(leapll, truc), if 3e « e €1 (U; EA) o

what(e) = variable = exp A
(value', new') =

value # ||expl|

(value, false), otherwise

\

At last, | need to definé? which consists of the pair &2 and EN?'. | will need
to consider several cases when construcfidg. If —||bool;||, then EA" will keep
the old| (Ef), i.e. B =| (E#). However, if||bool;|, thenEA =] (Ef) U S
whereS will be given below.

— if head(Atom;) = ¢, thenS = {(false ¢)}

— if head(Atom;) = assign v = exp(x), thenS = {(~ (x),v = exp(*))}

— if head(Atom;) = assign # expi(*1) v = exp(x), thenS = {(~ (x),t; =

1T+ expu|]), (T' = t;,0 = exp(+))}
— if head(Atom;) = # exp, thenS = {(T = ||T + exp||, )}
— if head(Atom;) = Q e_exp(x), thenS = {(~ (x),e)}

— if head(Atom;) = v = exp, thenS = {(T = ||T||,v = ||exp||)}
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— if head(Atom;) = v = # exp; exp, thenS = {(T = ||T+exp:||,v=||exp||)}
— if head(Atom;) = v = Q (exp;(x)) exp, thenS = {(~ (x),v = |lexp||)}
— if head(Atom;) = v <= exp, thenS = {(T = ||T||,¢)}
— if head(Atom;) = v <= #texp, exps, thenS = {(T' = ||T||,¢)}
At the end | need to definEN>. Similarly to the definition ofz/"’, I will consider

several cases. H||bool;||, thenEA" = ENB and if ||bool;||, then

EA = ENP U S, whereS will be defined below.

{(T=|T|,v=|exp|)}, if head(Atom;) =v <= exp,
{(T'=IT + expu|l;
v = |lexp||)} if head(Atom;) = v <= # exp; exp

0, otherwise

\

Let me give some intuition for the definition 6ftep. The cases when, v , = true
are clear. The first one is a time advancing step and in thendege simply activate all
enabled events from the non-blocking assignment list.

There is more action in the actual computation step when 73 = true. The in-
tuition behindbool; = true is thatatom; is active and it schedules events for the next
configuration. Therefore, when||bool;|| | simply execute those events which the atom
has scheduled in the past and are enabled at the moment.

However, wherj|bool;|| | need to consume the current statement of the atohadd.
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That is why the newAdtom gets the tail of the currentltom and pending orhead |
determine the new booleanol; and the new event lists;’.

Let me illustrate the intuition whejfbool; || andhead(Atom;) = assign v = exp(x).
In this case | have that the current atom is active, i.e. | tesghedule some events. The
actual statement of this atomassign, i.e. | need to schedule an event which will be
triggered when there is a change in the variablesid must update the value ofupon
that change. Hence | schedule (x), v = exp(x)) into B,

Similarly, bool’ gets~ (x) because the correspondiagsign must be activated when
there is a change in some of the variables

The other event guards afalse which are never triggered and is reserved for the
empty statemenf]’ = ||T" + exp|| which stands for the time delay afid= ||T'|| when |

want to schedule an event for the current time.

5.5 Healthiness Conditions

To increase the confidence in the operational semanticsl ldeflne and prove some
healthiness conditions on it. Obviously, these healtlsrenditions reflect my under-
standing of how a “correct” Verilog simulator should behave

Let me give some definitions and simple properties about pleeadional semantics.

Definition 3 A run of a Verilog progran® is a sequence of configuratiofs; } 2, where

co is a start configuration derived from? andc;; = Step(c;) for j > 0.
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Lemma 1 head andtail are total functions.

Proof (Lemma 1) Both the functions are defined ov&om and have definitions for each

sub-category of the domain. Some of the definitions are tehtike

head(assign body) = assign

and for those | know they are defined. | only need to check ttadity of the recursive
definitions. | will considet.ead only though the same arguments applydd as well.

The cases | need to look at are as follow:

head(always statement) = head(statement)
head(initial statement) = head(statement)
head(statement ; Atom) = head(statement)
head(if (bool) statement; else statementy) =

head(statementy), iff ||bool || = true

head(statement,), otherwise
head(while (bool) statement) =

head(statement), iff ||bool || = true

g, otherwise

head(begin statement; ; {statement} end ) = head(statement,)
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The proof follows an induction by the complexity of the arggmhofhead with complex-

ity here means number of characters in that argument, ngtheof the argument. The
base of this induction are the terminal cases of the definitibere | already know that
head is defined. The induction step consists of trivial check thatll induction cases

shown above, the argumentifad reduces its length. |

Lemma2 7, v 1y v 7y v 73 = true andr; A 7; = false for: # j.

This lemma shows that my four step tests are orthogonahtii@ost one can be true at
any time, and they capture all possible cases, i.e. at |@a&sisdrue at any time.
Proof (Lemma 2) Let me have a configuration for which an variablerjmietation]|. ||

and allr tests are defined. | will show firstthatv 7, v 5 v 73 = true.

ovnvTevTy = (] (UEZ]) =0n \/|]b00li|]) v
(1 (U EZJ) =0 A /\ﬁ]\boolil\) v
(1 UED =01 UE®) #0) v (1 (UED #0) =

= (1 (U ED) =04 (\/ llboolsll v A\ ~lbook])] v

[

CUEH =01 UE™ A0 (1 (B #0) =

2

=t UE) =00 (BN =01 UE™ £0) (1 (UED £0)
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Now it is vital to notice that (U, E) =0=1 (U, E*) =07 (U, EN?) and then

it is easier to extend the transformation as follows.

TovTivTvTy=(] (UEZA):@/\T (UEiNB):@)v

i

B =01 B 200 (1 (50 £0) =

7

= (1 (JEN =01 (UE)

0) v

T(UENB # 01 ( UEA #0=

UEA DS} UENB =0)v

T(UEf) UENB = () = true

Analogously | can show that atl are mutually inconsistent. | will work out onty A 7.

All other conjunctions are treated in a very similar fashion

AT = (T (UEZJ) =0n /\ﬁ]\boolil\) A

=1 <U By =0 a1 (JEN®) =01 )\ ~llbool | »

UEA 0 AT UENB ) # () = false
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and this completes the proof of lemma 2. |

Lemma 3 The functionStep(.) is total.

The totality of Step guarantees that a run is always achievable.
Proof (Lemma 3) The proof for the totality &ftep is based on the basic syntax of Ver-
ilog given in tables 4.1, and 4.2. As seen in the definitionglaim;, bool., (variable,
value', new’), EA and ENP', the new configuratiostep(c) is well defined and depends
only on the totality of the functiongead andtail which we have already establishell
Admittedly, there is no established formal semantics oflygrHDL, i.e. the formal
proof of correctness for a simulator and/or semantics fed@nguage cannot be derived
because | do not have a standard to compare our approachvyitbinly hope is to show
that the formal model behind the semantics is a true refleafomy intuition for the

behaviour which a Verilog program would generate.

Healthiness Condition 1 If {c;}32, is a run generated by program, thenT;,, = 0 and

T,

Cj+1

> T, forall j > 0.

The intuition behind this healthiness condition is thateim our operational semantics is
monotonically increasing.

Proof (Healthiness Condition 1) | should note first that any runihewith a start config-
uration wherél’ = 0. From there after, in all cases of the definitiondstp | either keep

T or increment its value with one. [ |



CHAPTER 5. Operational Semantics for Verilog 97

Healthiness Condition 2 If ¢ = Step(c) for a configuratione, then all enabled active

events fromr are executed during the transition step.

This healthiness condition guarantees the true paratietit the proposed operational
semantics.

Proof (Healthiness Condition 2) The proof follows the constroctdf 1’ andE{". In the
first two step tests,i.e; andm,, | have that all active events are disabled}%c= V' and
EA = E. Inthe case of; though, | have that the formation &’ consists of the union
of all disabled active events from i.e. | (£}, and the new scheduled events from the
atoms. In the same time, the new values of the variablé$ iare calculated according
to the enabled active events. Thus all active enabled eWamtsc are executed in the

transition frome to ¢'. [ |

Definition 4 1f 1 (U, ; E’) = () for a configuration, then it is a stable configuration. A

start configuration is not stable.

Healthiness Condition 3 Time advances at a stable configuration only.

This health condition guarantees that unless a stable cwafign is reached, the time
does not advance. This property ensures that the stimutltharesponse are synchro-
nised.

Before looking at condition 3, | will prove a small lemma.
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Lemma 4 Let{c;}52, be an arbitrary run and

¢ = (T, ((Atomy,booly), . .., (Atom,, bool,,)),V, (E1, ..., E,))

be any of:; for j > 0. Then for alli, there existg € E* wheree = (bool;, statement).

Proof (Lemma 4) The proof follows induction fgrand the base for the inductionjis= 1.
ObviouslyT is true forc, i.e. for the start configuratiompol; is true and| (E#) = ()
for all 7. Following the definition ofStep | can see whaliool, and £/’ will be, i.e. | can
check if the claim from the lemma holds for which is the base for the induction.

Let me fixi, i.e. | fix the atom in the configuration. For all possible caksee that
(bool!, o) € EA' for somen which shows that the base for the induction holdsdor

Let me now assume that the claim holdsgr | would need to show that it holds for

cny1. Here | need to consider two cases.

e If ||bool;|| = true, then | simply see that the cases oo, and E;"’ correspond and

for each of them | hav@ool!, o) € E' for somea.

¢ | know that the claim from the lemma holds fay, i.e. if ||bool;|| = false then the
corresponding everibool;, o) € E# would not be enabled, i.€¢bool;, o) €| (EA).
Obviously,| (EA) C EA' i.e.(bool;, o)) € EA'. Onthe other handlbool;| = false

impliesbool, = bool,;.

This shows that the claim from the lemma holdsdgr;. [ |
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Lemma 4 implies that, except for the start configuratioflJ; ; El) =0 = A, bool;

=T (U, E’) = () andry is true in the start configuration only. Now | can prove health
iness condition 3.
Proof (Healthiness Condition 3) It is clear from the definition$fep, that timeT" ad-
vances only whem = true. From lemma 4 | derived that <1 (U, ; E’) = () which by
definition is only true in the stable states. |

| can interpret healthiness condition 3 in the following wHyhe system is in a stable
configuration and there is an event going off in its successorthere is a stimulus from
the environment of the system, then it would freeze the tim# a new stable state is
reached. Obviously, a new stable state reached means ¢haystem has produced a
response to the stimulus and thus has stabilised itselffattehat the response and that
stimulus occur simultaneously simply says that Verilog syachronousanguage [73,

28, 54].

5.6 Example of a Simulation

As a simple example | will give the sequence of configuratiaesa run, for the following

Verilog program.

module test ;
reg a0,al,b0,bl ;

wire cout,r0,rl,r2 ;
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assign #1 {cout,r0} = a0+ 1O ;
assign #1 {r2,r1} =al+bl+ cout ;
initial begin
a0=0; al=0;
b0=0; bl=0;
#10 a0=1; b0=1;
end
endmodule
The example is purely illustrative and could be viewed asutaton of the program. The

obvious atoms are

e assign; where

assign; IS assign #1 {cout,r0} = a0+ b0 ;

e assign, where

assign, IS assign #1 {r2,r1} =al+ bl + cout ;

e initial where
initial IS initial begin
a0=0,; al=0;
bO=0; b1 =0;

#10 a0=1; bO=1;
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end

therefore the start configuration will be

co = (0, ((assign, ,true), (assign, ,true), (initial ,true)), { L }, (0% 02 0?)).

At this point | evaluate the step tests. Obviously only = true, so the next step will be

c1 = (0, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
((al =0;00 =0;01 = 0;#10 a0 =1;00 =1),7 = 0),
{L}
( ({(~ (a0,00),t; =T+ 1), (T = t1, {cout,r0} = a0 + 00)},0),

({(~ (al,bl,cout),to = T+1),(T = ta, {r2,r1} = al+bl+cout)}, D),

Now | need to evaluate the step tests again which gives mg = true on the basis
that the even{T" = 0,a0 = 0) from the event list associated with theitial atom is

enabled. Thus my next configuration would be

co = (0, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
(b0 = 0351 = 0; #10 a0 =160 = 1),T = 0)),

{(a0,0,true), L },
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( ({(~ (a0,b0),t; =T +1),(T = t1,{cout, 70} = a0 + b0)},0),

({(~ (al,bl,cout),ty = T+1),(T = ta, {r2,r1} = al+bl+cout)}, ),

Again | have the case when = true. Hence

c3 = (0, ((assign, , ~ (a0, b0)), (assigny ,~ (al,bl, cout)),
(b1 = 0; 410 a0 = 1;60 = 1), T = 0)),
{(a0, 0, false), (al,0,true), (¢;, 1,true), L },
( ({(~ (a0,b0),t; =T +1),(T = ty, {cout,70} = a0 + 00)},0),

({(~ (al,bl,cout),to = T+1),(T = ta, {r2,r1} = al+bl+cout)}, D),

and similarly | can generate the sequence

cs = (0, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
(#10 a0 =1;00 = 1), T = 0)),
{(a0, 0, false), (a1, 0, false), (00, 0, true), (t1, 1, false), (¢, 1, true), L },
( ({(~ (a0,b0),t; =T +1),(T = ty, {cout,70} = a0 + 00)},0),

({(~ (al,bl,cout),ty = T+1),(T = ta, {r2,r1} = al+bl+cout)}, ),
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cs = (0, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
((a0 = 1;00 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, true), (¢,, 1, false),
(to,1,false, L},
( ({(~ (a0,00),t, =T + 1), (T = ty, {cout,r0} = a0 + 00)},0),
({(~ (al,bl,cout),ty = T+1),(T = ta,{r2,r1} = al+bl+cout)}, D),

{(T"=10,¢)},0)

cs = (0, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
((a0 = 1;00 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, false, (¢,, 1, false),
(t9,1,false), L },
( ({(~ (a0,b0),t; =T +1),(T = ty, {cout,70} = a0 + 00)},0),
({(~ (al,bl,cout),ty = T+1),(T = ta, {r2,r1} = al+bl+cout)}, ),

{(T'=10,¢)},0)
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)

Here | have all the events are not enabled,r.e- true and | take a time advancing step.

cr = (1, ((assign; , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
((a0 = 1;00 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, false, (¢,, 1, false),
(t9,1,false), L },
( ({(~ (a0,b0),t; =T + 1), (T = ty, {cout, 70} = a0 + 00)},0),
({(~ (al,bl,cout),ts = T+1),(T = ta, {r2,r1} = al+bl+cout)}, ),

{(T'=10,¢)},0)

This leads me to a configuration whete= true.

cs = (1, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
((a0 = 1;00 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, false), (¢,, 1, false),
(t9, 1,false), (10, 0, true), (cout, 0, true), L },
( ({(~ (a0,00),t; =T +1)},0),
({(~ (al,bl,cout),ty =T +1)},0),

{(T'=10,¢)},0)
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)

co = (1, ((assign, , ~ (a0, b0)), (assign, ,~ (al,bl, cout)),
((a0 = 1;00 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, false), (¢,, 1, false),
(t9,2,true), (r0, 0, false), (cout, 0, false), L },
( ({(~ (a0,00),t, =T +1)},0),
({(~ (al,bl,cout),ts = T+1),(T = ta, {r2,r1} = al+bl+cout)}, ),

{(T'=10,¢)},0)

Again | advance the time

c10 = (2, ((assigny ,~ (a0, 0)), (assign, , ~ (al, bl, cout)),
((a0 = 100 = 1), T = 10)),
{(a0, 0, false), (al, 0, false, (b0, 0, false), (b1, 0, false, (¢, 1, false),
(t9,2,false), (0,0, false), (cout, 0, falsg), L },
( ({(~ (a0,b0),t; =T +1)},0),
({(~ (al,bl,cout),ty = T+1),(T = ty,{r2,r1} = al+bl+cout)}, D),

{(T"=10,¢)},0)
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c11 = (2, ((assigny ,~ (a0,00)), (assign, , ~ (al, bl, cout)),
((a0 = 1;60 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false), (00, 0, false), (b1, 0, false, (¢,, 1, false),
(t9,2,false), (10,0, false), (r1, 0, true), (r2, 0, true), (cout, 0, false },
( ({(~ (a0,00),t;, =T +1)},0),
({(~ (al,bl,cout),ty =T +1)},0),

{(T'=10,¢)},0)

and | have to advance the time again. At this point nothingragting happens until | get

T = 10, so | skip toc;9 where

c19 = (10, ((assigny , ~ (a0, 0)), (assigny , ~ (al, bl, cout)),
((a0 = 1;00 = 1), T = 10)),
{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, false), (¢,, 1, false),
(t9,2,false), (10,0, false), (r1, 0, false), (r2, 0, false), (cout, 0, false },
( ({(~ (a0,00),t; =T +1)},0),
({(~ (al,bl,cout), ty =T +1)},0),

{(T'=10,¢)},0)
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co0 = (10, ((assigny , ~ (a0,00)), (assign, , ~ (al, bl, cout)),

{(a0, 0, false), (a1, 0, false, (00, 0, false), (b1, 0, false, (¢,, 1, false),
(t9,2,false), (10,0, false), (r1, 0, false, (r2, 0, false), (cout, 0, false },
( ({(~ (a0,00),t;, =T +1)},0),
({(~ (al,bl,cout),ty =T +1)},0),

({(T' =10,a0 = 1)},0)

co1 = (10, ((assigny , ~ (a0,00)), (assigny , ~ (al, bl, cout)),
(e, T = 10)),
{(a0, 1,true), (al, 0, false, (b0, 0, false), (b1, 0, false, (1, 1, false),
(t2,2,false), (10,0, false), (r1, 0, false, (r2, 0, false), (cout, 0, false },
( ({(~ (a0,00),t;, =T +1)},0),
({(~ (al,bl,cout), ty =T +1)},0),

({(T = 10,00 = 1)},0)

c22 = (10, ((assigny , ~ (a0, 0)), (assigny , ~ (al, bl, cout)),

(¢, false),
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{(a0, 1, false), (a1, 0, false), (b0, 1, true), (b1, 0, false), (¢;, 11, true),
(t9,2,false), (10,0, false), (r1,0, false, (r2, 0, false), (cout, 0, false },
( ({(~ (a0,b0),t; =T + 1), (T = t1, {cout, 70} = a0 + b0)},0),
({(~ (al,bl,cout),ty =T +1)},0),

({(false )}, )

co3 = (10, ((assign, , ~ (a0, b0)), (assign, , ~ (al, bl, cout)),
(¢, false),
{(a0, 1,false), (al, 0, false, (b0, 1, false), (b1, 0, false, (;, 11, false),
(t2,2,false), (10,0, false, (r1, 0, false, (r2, 0, false), (cout, 0, false },
( ({(~ (a0,b0),t; =T +1),(T = ty, {cout,70} = a0 + 00)},0),
({(~ (al,bl,cout),ty =T +1)},0),

({(false£)},0)

cog = (11, ((assigny , ~ (a0, 0)), (assigny , ~ (al, bl, cout)),
(¢, falss),
{(a0, 1,false), (al, 0, false, (b0, 1, false), (b1, 0, false), (¢, 11, false),

(t9,2,false), (10,0, false), (r1,0, false, (r2, 0, false), (cout, 0, false },
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( ({(N (a’ov bO), = T+ 1)7 (T =1, {COUt,TO} = a0 + bO)}, @) '
({(~ (al,bl,cout), ty =T +1)},0),

({(false £)},0)

cos = (11, ((assigny , ~ (a0,00)), (assign, , ~ (al, bl, cout)),
(¢, false),
{(a0, 1, false), (a1, 0, false), (00, 1, false), (b1, 0, false), (¢,, 11, false),
(t9,2,false), (10,0, false), (r1, 0, false), (r2, 0, false), (cout, 1, true) },
( ({(~ (a0,00),t;, =T +1)},0),
({(~ (al,bl,cout),ty =T +1)},0),

({(false£)}, )

co6 = (11, ((assign; , ~ (a0, b0)), (assign, , ~ (al, bl, cout)),
(¢,false),
{(a0, 1,false), (al, 0, false, (b0, 1, false), (b1, 0, false, (¢, 11, false),
(t2,12,true), (r0, 0, false), (r1, 0, false), (r2, 0, false), (cout, 1, false },
( ({(~ (a0,00),t, =T+ 1)},0),

({(~ (al,bl, cout),ty = T+1),(T = ta, {r2,r1} = al+bl+cout)}, ),
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({(false £)},0)

cor = (12, ((assigny , ~ (a0, 0)), (assigny , ~ (al, bl, cout)),
(¢,false),
{(a0, 1, false), (a1, 0, false), (00, 1, false), (b1, 0, false), (¢,, 11, false),
(t2,12,false), (10,0, false), (r1, 0, false), (r2, 0, false, (cout, 1, false },
( ({(~ (a0,00),t, =T+ 1)},0),
({(~ (al,bl,cout),ty = T+1),(T = ta,{r2,r1} = al+bl+cout)}, D),

({(false£)},0)

cos = (12, ((assign; , ~ (a0, b0)), (assign, , ~ (al, bl, cout)),
(¢, false),
{(a0, 1, false), (a1, 0, false), (00, 1, false), (b1, 0, false), (¢,, 11, false),
(2,12, false), (r0, 0, false), (r1, 1, true), (r2, 0, false), (cout, 1, false },
( ({(~ (a0,00),t; =T +1)},0),
({(~ (al,bl,cout),ty =T +1)},0),

({(false£)},0)
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)

c29 = (13, ((assigny , ~ (a0, 0)), (assigny , ~ (al, bl, cout)),
(¢,false),
{(a0, 1, false), (a1, 0, false), (00, 1, false), (b1, 0, false), (¢,, 11, false),
(t2,12,false), (10,0, false), (r1, 1, false), (r2, 0, false, (cout, 1, false },
( ({(~ (a0,b0),t; =T +1)},0),
({(~ (al,bl,cout), ty =T +1)},0),

({(false£)},0)

From here after, only, is true and the configuration keeps stuttering. | can easilykt

the values of, r; andr, where the result is stored.

5.7 Summary

An operational semantics for Verilog is presented heres filly parallel and it treats the
language with its Behavioural and RTL constructs as defin¢dhles 4.1 and 4.2.
Several healthiness conditions support the trustworsisiné my semantics. | resort
to them because Verilog lacks an established formal seosaiotivhich | can relate mine.
However, | believe that the healthiness conditions trufieot my intuition about how a

simulator for Verilog should behave.
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At the end | present a small example of a run. This shows thiecayity of my work

in a possible real simulator.



Chapter 6

Equivalence of Denotational and

Operational Semantics

The proof of equivalence between the operational and thetdganal
semantics of Verilog is presented. This guarantees mytabilicalcu-

late properties in an effective way by constructing a maghin

6.1 Introduction

In the previous two chapters 4 and 5 | presented two diffdi@nmalisms that define the
semantics of Verilog in denotational and operational tecorsespondingly. However, the
possibility of differences in these formalisms still rem&and hence the need for a formal
proof of their equivalence. Here | present the details optto®f which also has the added
benefit of strengthening my belief that the semantics | prieise‘correct”. Admittedly,

113
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Verilog does not have an established formal semantics amthniat check if my work
is correct with respect to a “standard” semantics. Theegfor chapter 5 | gave several
healthiness conditions which | believe should serve asssaryg tests for every formalism
that claims to give semantics for Verilog, being a simulatootherwise.

In this chapter | go a step further. Since | now have two forsmas | can attempt to
show that they are equivalent in the sense that the behadesaribed by the denotational
semantics is precisely the one generated by the operasen@ntics. Definition 6 and
Theorem 4 formalise this notion. Once | have this proof, | clamm a higher confidence

in the truthfulness and correctness of my work.

6.2 Outline of the Proof

The general idea of the proof is to construct a step for the@ional semantics and, at
the same time, to construct a state and an ITL formula frompanational configuration.
Having the latter | can define when an ITL state and a formwdaguivalent to a config-
uration and having the former | can start with equivalenestéor the operational and the
denotational semantics and take a step after which | cam agaipare the states.

For the execution of this plan | will need several lemmasotems and a definition.
Lemma 5 allows me to combine the steps of all parallel ators @nsingle step for
the whole system. Lemma 6 allows me to find the step of the dlo¢ke denotational

semantics. Theorem 2 constructs a step for the denotasenantics, while definition 5
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in conjunction with theorem 3 tells me that the set4ibms from a syntactically correct
Verilog program is a bit smaller that the set given by the gaingefinition of Atom in
table 4.2. The result of Theorem 3 is ultimately used in defjrihe equivalence between
an ITL formula and state and an operational configuratiofir{i®en 6) which trivially

leads to the final result of Theorem 4.

6.3 Detailed Proof

Lemma 5
(f; Dskip) >
dr e (fi(x); Fi(x)) a...nTx e (fulx); Fu(x)) =
Ary,. . 1, 0
(frlz/zi] Ao fulz/n));
(Fi[z/x1) A ..o A Fylx/xy])
}
Lemma 6

inf - D> ((while bdo f); fo)* = (if bthen f; else f5)"
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Proof (Lemma 6)

ths = ((while bdo f1); f2)"
= ((ba fi)* Afin=b); fo)*
= ((baf)"5(=bn f2))
rhs = (if bthen f; else f,)*

(b A f1) v (=ba f2))”

| will consider several cases. Lgt O empty. Then(b » f1)* = empty, therefore

lhs = (=b A f3)*. Atthe same timehs = (—b A f>)* and thereforéhs = rhs.

If fo D empty, thenlhs = ((ba f1)*;(=b A empty))*, i.e.O=b D (lhs D finite)
andinf A lhs = false Similarly, >=b > (rhs D finite), i.e. inf A rhs = false
thereforeC—b A inf O (lhs = rhs). However,0Ob O [hs = (b A f1)* A inf = 1rhs A

inf, thus(fa D empty) DO inf D (lhs =rhs).

Now, let me consider the case whén. f> A more In this case

bainf > ((while bdo f1); f2)*

((while b do f1); f2) ; ((while bdo f1) ; f)"

= (if bthen (f1; (while bdo f;)) else empty) ; f2) ; ((while b do f1); f2)*

= fi;(while bdo f1); fo; ((while bdo f); f2)
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= fi;((while bdo f,); f)*

and
bainf D (if bthen f; else f3)*
= (if bthen f, else f,) ; (if b then f; else f,)*
= f1; (if bthen f; else f5)*
and

—bainf > ((while bdo f,); f)*

= ((while bdo f1); f2); ((while bdo f); fo)*

(if b then (£, ; (while b do f1)) else empty) ; f2) ; (while b do f1) ; f2)*

25 (while bdo £1); fo)*

and

-bainf D (if bthen f; else f5)*

(if b then f; else f,); (if b then f; else fy)*

= fo;(if bthen f, else f)*



CHAPTER 6. Equivalence ... 118

This tells me that

lhs ninf= ((b A f1) v (5b A f2)) ;5 Lhs Ainf

and

rhs ninf= ((ba f1) v (=b A f2));rhs Adnf.

Thereforelhs » inf = rhs A inf, i.e.

inf O [lhs=rhs

Theorem 2 LetP be a Verilog programP ’s denotational semantigg® || has a step.

Proof (Theorem 2) Let me say thatis a program withm atoms and

P :=module P (x);
global variables;
atomy;

atoms;

atomy,;

endmodule

| will assume that the global variables that do not appeatheridft-hand side of a non-



CHAPTER 6. Equivalence ... 119

blocking assignment are ranging among while those that appear on the lefthand side
of non-blocking assignments are rangingin. Let the following be the initial values of

the variables irP :

e Time = t, for some integer valug i.e. | consider the case when time starts from

~

t.

e For any global variabler | will assume an initial value) and associated event
triggernew,. For that its corresponding memory variablgl will have thaty = ©

andnew, = newy,

e For some “non-blocking” variables, | will assume that some events have been
scheduled for them. Let me say that> ¢ is the time for the non-blocking assign-

ment andi;, is the scheduled value. Then | will haffg, 7] in the list£ok | ifa

atom

non-blocking assignment fox, occurs in the code fattom;.

| also know that the denotational semanticsHois as follows.

[P || =
JAtomy.active, . . ., Atom,, .active,

Vi, Xy, Disable, Time, Lk, o

atom;

Vi = 0; A newy, = newy, A Xj = Tj A newy; = Newg,; A
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Lot =l [t @), ] n Time =1
O(Disable = (Atom;.active v ... v Atom,.active)) a

inf A clock(Disable) n ||atomy|| A ||atoms]|| A ... A ||atomy,]|| A

NB*  A...An NB*™

atom; atomy,

where)); are the global variablest), are the variables appearing on the left-hand side of
a non-blocking assignment alﬁ(j;’;mj are the list variables for non-blocking assignments

for each atom and each non-blocking variable.

||IP || is transformed into a form where | can apply lemma5, i.e.

Pl =
JAtom; .active, . .., Atom,,.active,
. . X
Vi, Xy, Disable, Time, Ly, *
Vi = 0; A newy, = new, A Xj = Tj A newy; = New,; A
Lok =1 [te, @), .. ] A Time =1
atomj = [+ kyLXkly---| N 2UME=TA

O(Disable = (Atom,.active v ... v Atom,.active)) a

. n
inf A Hclock(Disable) ) Tclock(Disable) /\/\i—l HHatomiH ) CZj||atomi|\ A
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NG N B
- . Q A
/\i:l,j:l ( NBtom; ’ atomj)

J

Using the definition of a clock and lemma 6, | can define

Hclock(Disable) =
if Disable then skip
else Time := Time + 1

Teiock(Disable) = clock(Disable)

and of cours€i 5= will be given as
a omj

=

Hyp,,,
if Disable then skip

else (

Ytom = Jilter(L%om, Time) a

VZ < ‘szm‘ ¢ If( Ztom[i] [0] = sze) then V = szm[l][l]

121



CHAPTER 6. Equivalence ... 122
and having in mind thatl y = s NBgj,,, = NBgiom, -

Similarly | can define the? o, | andTjqom, |- For that | will need to consider some

cases.

Case 1 If atom; is an non-delayed continuous assignment statemengdsdgn v =

exp(vi, ..., Un), t(N€NH |10, Will be

Hyatom,| =
{(Atom,.active =~ (Vy,...,Vy)) A
{if = Atom;.active then skip

else V:=exp(Vy,..., V)

}

andTjaeom,| = ||atom;||. This is becaus@atom;|| = { H|jatom,||}* @NAdH jatom,| O SKip.

Case 2 If atom; is a delayed continuous assignment statementis€ign #exp; v =
exp(vi, ..., v,), then | can similarly give definitions fail |0, @NdTja0m, |- HOWeEVeT,

before doing this | will need to look into the definition itom,||

”/\

|assign #exp; v = expa(*)
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dt, Atom.act,, Atom.acty
{O(Atom.active = Atom.act; v Atom.acts) A
{if ~ (x) then (Atom.act; = truea t := Time + exp;)

else (Atom.act; = false a
if (t # Time) thent :=t
elset:=t—1

) N

if t = Time then (Atom.acty = true A V := expy(x))

else (Atom.acty = false A Skip)

}*

Without loss of generality | can rename the local variable&om.act,, Atom.act, and
pull them in front of the whole formul§P ||, i.e. | can make them global, hence | can

apply lemma 5. Therefore, | can safely assume that

Hjatom;| =

{(Atom.active = Atom.acty v Atom.acts) A
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{if ~ (x) then (Atom.act, = truea t := Time + exp;)
else (Atom.act; = false a
if (t # Time) thent :=t
elset:=t—1
) A
if t = Time then (Atom.acty = true A V := expy(x))

else (Atom.acty = false A SKip)

and hencd,iom,| = ||atom;|| again becausgatom;| = {Hjatom,||}* aNd Hjatom,| O

skip.

Case 3 If atom; is an always statement, i.ealways statement, then|latom;| =

, 1.e.

||statement|| 3 ||at0mz|| = H||statement|\ ;ﬂ|statement|\ ; ||at0mi

H||always statement| — H||statement|\ and

CZj||always statement|| — CZj||statement|\ ) HatomZH

Thus, | have to investigate the semantics of a statementwihid! do later.
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Case 4 If atom; is an initial statement, i.e.initial statement, then|atom;| =
|statement|| ; O(Atom.active = fals€) = H siatement| ; Tjjstatement|| ; O(Atom.active =

false), i.e.

H||initia1 statement|| — HHstatementH and

~

CZj||ini1:,ia1 statement|| — ﬂ\statement” ) D(Atom.active = false)

and | have to look again at the semantics of statement.

Case 5 Now | will have to show that | can transforffstatement|| = Hstatement]| ;

CZj||smtememt|\ .

Case 5.1 If statement isz, then |[statement| = Atom.active = false » skip, i.e.

Hstatement)] = (Atom.active = falsen skip) andTjjsatement| = €MPLY.

Case 5.2 If statement is event control, i.8tatement = Q (ejor ,...,or e,), then

|@ (ejor,...,ore,)| =
while = ~ (&,...,&,) do (|le]));

(Atom.active = true A skip)
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Obviously, if = ~ (517---7571)’ then H||statement|\ = H”e” and Tl\statement” = T||€|| ;
|statement||. However, if~ (&1,...,&,), thenH|gaement = (Atom.active = true a

Sklp) andﬂ\statement” = empty.

Case 5.3 Let me now consider the case of time delay wk&ttement = # exp, i.e.

||statement|| =
Jt « {t = Time + exp A

(while 7Time < t do (||¢]|) ; (Atom.active = true A skip))

}

Jt e {t = Time + ETP A (HHstatementH ) 77Hstanfement||)}

In this case

llell, if Time <t
HHstatementH =
Atom.active = true A skip, otherwise

and

while 7ime < ¢t do (||¢]|);

T |statement|| = (Atom.active = true A skip)), if Time <t

empty, otherwise
\
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Case 5.4 The rest of the statements have trivial definitionsfbandT .

Having definedH, | can see thati > skip, i.e. | can rewritg|P || using lemma 5

into the following form.

[
JAtom.active, . .., Atom,,.active,
V;, Xy, Disable, T ime, Eft’j)mj o {
Vi = 0 A newy, = new, A Xj = Ij A newy;, = new,, A

L%

atom;

= [...,[tk,i‘k],...] ATime:fA
O(Disable = (Atom;.active v ... v Atom,.active)) a

inf A

n

[Hclock(Disable) /\/\ .

=1

(Hjatomq)| ~ Hype: )];

atomj

m,k

[Tclock(Disable) /\/\ (ﬂ\atcmin A NB* )]

i=1,j=1 atom;

and | know that

H ciock(Disabie) A/\ (Hjatom:) n Hype: ) D skip

atomj

=1
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and this will be the step dfP ||. Now | will have to show that the state after the step taken

by both the Operational and the Denotational semanties afe the same. |

Definition 5 V Atom is defined as follows.

vAtom ::= statement | always | statement ; v.Atom

V Atom ::= initial | assign | vAtom

Table 6.1: Syntax of Mtom

Obviously,V Atom C Atom and this is becauselways C Atom, sovAtom C Atom.
Analogously,initial andassign are both subsets oitom. It is also obvious that
V Atom is what | can expect to see in a configuration which is part efraaf a Verilog

program. This result is a part of the following theorem.

Theorem 3 If ¢ = (T, ((Atom;, bool;)), V, (E;)) is a non-start configuration taken from
a run of a syntactically correct Verilog program, theftom; is aV Atom and there are

several possible cases far,.

1. B} = {(~ (v1,...,vn),v = exp(vy,...,v,))} and ENP = () for somew, v;

2. EA = {(N (Ul, c. ,Un),tj

- t)} and EN? =  for somev;, t;, ¢

3. Ef = {(N (Ul, NN ,Un),tj

1), (T = t;,v = exp(vy,...,v,))} andE'? = ) for

somev, v, tj,t
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4. Ef = {(when, what)} andENP = {(wheny, whaty), . .., (wheny,, what,) } where

(falsg¢)
(true ¢)
(true,v = 0)
(when, what) = § (T ={,¢)
(T =t,v=10)
(N (Ula 7vn)7€)
L (N (Ula 7vn)7U:@)
and
T=tuv="2)
(when;, what;) =
(~ (v1,...,0n),v =10)

andt, v are constants.

5. E].A = S, U S, where

S1 C {(when, what)}

and

Sy C {(wheny, whaty), . .., (wheng, whaty) }

Proof (Theorem 3) The proof is an induction on a run, i.e. | check tiatheorem holds

for ¢, after | apply the step on a start configuration. Then, | wi# feat if it holds for
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¢, it will hold for Step(c) also. This is because | always include an event iﬁfoset
whenbool; is true, i.e. | schedule new events if | have that one of thatsvare enabled,

therefore | delete one and add the next.

Case 1 occurs when tb&om; is non-delayed continuous assignment,dssign v =

exp(vy, ..., Up,).

Case 2 occurs when thétom,; is delayed continuous assignment, eesign v =

#exp; exp(vy, ..., v,), tis aconstantant; > || 7.

Case 3 occurs when thétom, is delayed continuous assignment, eesign v =

#exp; exp(vy, ..., v,), tis aconstantant < |7

Case 4 occurs when thétom; is a behavioural atom and the cases that follow are

(falsg¢) , if head of Atom; is e
(true, ¢) , if head of Atom; isv <= exp
(true, ¢) , if head of Atom; isv <= #exp, exp,
(true,v = ) , if head of Atom; isv = exp
(when, what) =
(T =t,¢) , if head of Atom; is #exp
(T =t,v="10) , if head of Atom; isv = #exp, exp,
(~ (v1,...,0),e) ,ifhead of Atom; is Q(vy, ..., v,)
(~ (v1,.,v,),v="20) ,ifhead ofAtom;isv = Q(vy,...,v,) exp
\
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and

(true,v =0v) ,if head of Atom; isv <= exp
(when;, what;) =

(T =t,v=1) ,ifhead ofAtom; isv <= #exp; exp,

Case 5 occurs at non-blocking assign event activationiwhenr; is true. This is the
only case when there might be more that 2 evenEﬁn However, right on the next step
they all will be executed, because if | look at the definitidnSeep whenr,, | will see
that | add only those non-blocking assign events which thetfan | selects, i.e. they are
activated according to the interpretatifpfi. | only have to note now that the variable set
V' and the timéel" are left unchanged in g step, i.e. the interpretation will validate the
same events as active and will execute them at the very regxt st [

The denotational semantics BtAtom is easily derived. | only have to define
|| statement ; vAtom| = | statement|| ; ||v.Atom||. Now | can define properly what |

mean by deriving denotational semantics out of the operaticonfiguration.

6.3.1 From a configuration to an ITL state

How can | construct a state out of a configuration? Let me hagméiguration

¢ = (T, ((Atomq, booly), . . ., (Atom,, bool,,)), V, ((ElA, E{VB), o (Ef, ET]LVB)))

from ¢ | can construct an ITL state by
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o Time=T

e The values of alGlobal Variables can be taken from their counterparts in the vari-
able sel/. Let (x, value, new,) € V. Then the corresponding global variable must
beX = value. However, | know that for the ITL state | actually have twoishles,

namelyX = value andnewy = new,.

e Ifthe event(t, v = value) € ENP, then | will put[t, value] in the listLY,,, .

6.3.2 Constructing an ITL formula

Now | have to determine the corresponding ITL formula. | krtbergeneral form ofP ||,
| only have to see Whaltl|,¢om, | @andT].0m, | are for each atom. Itis quite trivial to note
that T} 4iom, | = || Atom;||. However, forH ..., | will need to consider some cases on

the event list§ E; ) for eachAtom;. Here | will apply the result of theorem 3.

1 If B = {(~ (v1,...,v0),0 = exp(uvy,...,v,))} and ENP = ) for somev, v,
then | am having a non-delayed continuous assignment atonh lamow what the

H of such an atomis.

2. If EA = {(~ (v1,...,vn),t; = ||T + exp:]|)} and ENP = () for somev;, t;, then |
have a delayed continuous assignment with the local vartahl 7 ime, for which

| know the definition.

3. EE} = {(~ (v1,...,vn), t; = | T+ expi]), (T = tj,v = exp(vy, ..., v,))} and
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EN

J

= () for someuw, v;, t;, this is again a delayed continuous assignment with

t > 7T for which | know the definitions of/ andT'.

4. If B = {(when,what)} and EN? = {(wheny,whaty), ..., (wheny, whaty)},

then | have a behavioural atom, i.e. an initial or an alwagsatFor those, | need

to look into the definition oktatement andv. Atom.

If (when,what) = (falsee), i.e. | have are as a statement. In this case |

know what the definitions are.

If (when,what) = (true, ¢), i.e. | have a non-blocking assignment (delayed

or not) and this is treated just below.

(when,what) = (true,v = v), then | have a simple blocking assignment, i.e.

Hyy —eap = {(Atom.active = true) » V := exp}.

If (when,what) = (T = t,¢), then | have just time delay and in this case

Hg cap| = 3t ¢ {t = Time + exp » While Time < t do (||e]|)}

If (when,what) = (T = t,v = ?), then | have a delayed blocking assignment
Hyy —geap, cap| = F » {x = exp » (||| ; ((Atom.active = true) A V :=

)}

If (when,what) = (~ (v1,...,v,),€), theNHa (¢,or ,...or e)| = While = ~

.....

(€1, &) do ([e]])

If (when,what) = (~ (vy,...,v,),v = 0), then | have event control de-
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layed blocking assignment which h&&, _, .., = 3z « {x = exp » (||n]|;

((Atom.active = true) A V := x))}. In this case is strictly Q(vy, ..., v,).

| have to consider only the case of the non-blocking assigniniiethere is

(whenj, what;) € E}? and

e (whenj, what;) = (T = t,v = ) and the constarit> ||T'||, then | have time
delayed non-blocking assignment algl, «—4 cop, caps|| =
{(Atom.active = true) n LY. = L%om + [[Time + expy, exps]]}, where
expy = || 1.

e (when;,what;) = (true,v = ), then | have a non-delayed non-blocking
assignment andl |, «—..,| = {(Atom.active = true) n LY, = L%om +

[[Time, expl]},

6.3.3 The final result

Definition 6 | will say that an ITL state and an ITL formula are equivalenta config-
uration if the state can be derived from the configuratiomgsihe procedure given in
section 6.3.1 and the formula can be derived from the cordigum using the procedure

given in section 6.3.2.

Now | can formulate and prove the following theorem.

Theorem 4 If the initial states are equivalent, then both semantiégtaquivalent steps.
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Proof (Theorem 4) It should be obvious that for any progmanthe first configuratiom;

of arun and|P || are equivalent (correspondent) according to the defingigiven above.
Next, | take a configuration, from which | construct an ITLtstplus a formula corre-

sponding to the configuration (the procedures are givenatises 6.3.1 and 6.3.2). Then

| take independent steps for the operational semanticshendienotational semantics and

| check that the definition for corresponding configuratitatesand formula after the step

holds as well. Therefore | conclude that the operational genbtational semantics are

equivalent. |

6.4 Summary

This is the most technical part of the thesis. The proof ofdheivalence between my
denotational and operational formalisms for Verilog akonve to claim a higher level of
confidence in my results. | can now reason both operatioaalty denotationally about
a Verilog program, therefore | can reason both about pr@gseand machines that imple-

ment them.



Chapter 7

A Case Study — Smart Card

Application

A partial refinement of a mixed hardware/software applargttogether
with all supporting proofs, is shown in this chapter. All mapteps
through the development are given. This application is @dpof-

concept” only. However, | believe the technique is pradtica

7.1 Introduction

A smart card application is required to perform Rivest Sliadiieman (RSA) [92] en-

cryption and decryption witla private keyon the smart card’s chip itself [75]. The ap-
plication should consist of a smart card and a reader. Ba&thahder and the smart card
should comply with International Standardisation Orgatiis (ISO) 7816 set of stan-

136
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dards [91] for size and pin configuration.

‘ SO 7816-1 ‘ SO 7816-2
Refers to 7810 which governs the physical dimensions of an Govems the dimension and location of
ID card: the chip contacts

Smart Cards are |D-1type cards
Width - 8586 mm x Height : $3.98 mm x Thickness : 0.76 mm

3.37010n 212510n 0301n
Only one location accepted by 150 since 1/1/93.

Chip can still be on the front or the back or the

refers also to 10373 regarding Test Methods card.

(a) (b)

Figure 7.1: ISO 7816 Standards

7.1.1 Electrical Signals Description

The following are the pin assignments as defined by [91]. $eedi(7.1(b)) for reference.

1. Vcc— Power supply input. This contact is used to supply the pawkage by the

reader.

2. RST — Reset signal supplied from the reader.

3. CLK — Clocking or timing signal supplied from the reader.

4. RFU — Reserved for Further Use.

5. GND — Ground reference voltage supplied from the reader.
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6. Vpp — Programming voltage input. This contact is to supply thikage required
to program or to erase the internal non-volatile memory argdsupplied from the

reader.

7. 1/0 — Input or Output for serial data to the integrated @irnside the card. This
contact is used as input (reception mode) or output (trassomn mode) for data

exchange.

8. RFU — Reserved for Further Use.

7.1.2 Operating Procedure for Integrated Circuit(s) Cards

This operating procedure applies to every smart card witiads.
The dialogue between the reader and the the card shall beicteodthrough the

consecutive operations:

connection and activation of the contacts by the readempower-up.

reset of the card, i.eeset command.

answer to reset by the card.

subsequent information exchange between the card anddden

deactivation of the contacts by the reader.

For a detailed description of each of these operations tef@ri].
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7.2 Requirements for a Reader

The reader should supply the smart card with appropriateepawd frequency sources
and be an interface device between the smart card and a hoptuter. The host and the

reader should be linked with a serial cable with RS 232 patoc

Host

Figure 7.2: A Reader and a Host

7.3 Requirements for a Smart Card

The smart card should perform the following, all-in-all, @& chip. It should, in no

circumstances, disclose the private key stored inside.

1. After the initialreset , it must respond with results from its self-test procedwwe a

an answer to reply.

2. Authenticate the reader via PIN, password or biometgatdication. For the whole
lifetime of the card, there must be at least one successtiakatication within every

period that covers three unsuccessful ones. This meanhehige of the card must
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end and the data in the card destroyed, if there are no sdicktasthentications

within a period of three unsuccessful ones.

3. Implement the following commands issued by the reader.

- make_keys : Generate a pair of public and private keys and store them in
its Electrically Erasable Programmable Read Only MemoifgRROM) for

further use.

- give _public : Give the public key to the reader.

- encrypt anddecrypt : Encrypt/Decrypt a data block given by the reader
using the private key. Data block is a sequence of bytes witdflength.
When the card receives amcrypt ordecrypt command it must respond

with the encrypted/decrypted result.

| will adopt the convention thateset is a privileged command andnake_keys ,
give _public ,encrypt anddecrypt areunprivileged commands.

The reader can asynchronously reset the card at any time. shbuld not damage
any data stored in the card or the card itself. Here we wiltgpéhat a reset signal on
the RST pin of the card, see pin 2-RST in figure (7.1(b)), isiedent to a privileged
reset command. Once reset, the card must wait for user autheptidagfore any other

command.
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Only after a successful authentication the card is requmeespond to the reader’s
unprivileged commands, i.eiake keys , give _public ,encrypt anddecrypt in
any order. Thgive _public ,encrypt anddecrypt commands can beissued by the
reader only if there is a pair of public and private keys siarethe card. A unprivileged

command cannot interrupt the card, if the later is respantbra command.

7.4 Top Level Specification

| will start with the assumption that the card and the readeraasingle system. This,
at a later stage, will allow me to formally specify each indual component in terms of
its environment, i.e. in terms of its counterpart. Goingkbecpage 27, | can see that it

represents Step 0 from Figure 3.1 on that page. In the fatigwuse the formalisations:
e activate  activates the contacts, i.e. the card is in the reader.
e reset resets the card successfully.
e not reset stays for unsuccessful reset.
e authenticate represents successful authentication.
e not _authent represents unsuccessful authentication.
e commandexecutes unprivileged command given to the card by the reade

e deactivate deactivates the contacts, i.e. card not in the reader.
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| will also accept, that these actions are mutually exckisivone another, i.e.

(7.2) Req(7.1) = any, A any, = false

for any twodifferentactions of the possible given just above. This assumptiounldvo
be quite natural when one considers that the card and therreadld perform only one

action at a time.
The top level specification must satisfy several propertigsthe following | will
assumel, F, F, and F; to be all finite formulas, i.eF’ O finiteandF; O finite for

j=1,2,3.

1. A successfuteset must always be preceded lagtivate , i.e. one can only

reset the card if it has been activated.

Reqr.2y = O(
Freset D

(7.2)
(F' D <O(activate ; ~@deactivate))

2. Everyauthenticate must be preceded byraset , i.e. one can authenticate

the card only if the last attempt to reset it has been suadessidl it has not been
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deactivated since then.

Req.3)= 0O(
F';authenticate D

(7.3)
(F D $O(reset; ~®(not_reset vdeactivate)))

3. All unprivileged commands must always be preceded by aesstul authentica-

tion.

Reqg.4 = 0(
((F; command) A =(F D <command)) D

(7.4)
(F' D <authenticate)

4. every period that covers three unsuccessful autheioinsaand not a successful one
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must be followed by a period where no unprivileged commarmkécuted.

Reqz.sy = O(
((not_authent ; F} ;not_authent ; Fb;

not_authent ; F3) A
(7.5)

—(F; D @authenticate) n =(Fy D @®authenticate)

) D (F3 D (—=Ccommand))

The automaton in figure (7.3) represents the possible transiof a system composed
of a reader and a smart card working together. The automai®a ktart state but it lacks
a final state. Instead it has a “sink”; (g interpreted as a “dead” end. Notably, each label

is a name of a procedure.

| can specify the behaviour displayed by the automaton indigu3 by a set of com-
positional properties that encode the automaton. Theaeg-formula® given by (7.6)

can be composed into groups of the sub-formulas, thus

(7.6) =0 /\iliO i

| shall recall that a state is a boolean expression, thusaisiste formula in ITL. At this

moment | will only specify that all stateg are different, i.e. mutually exclusive. Later |



CHAPTER 7. A Case Study — Smart Card Application 145

v
¥ - (3,
activatey |A deactivate

@ command
A deactivate ivate i
LJ authent <€ authenticate e > deactivate
[« not_reset|
®novresel (9, 9% S
A deactivat ¥ not_authen
/
A A deactivate
A authenticate @
A authenticate
q q
» not_authen 4
V¥ deactivate

- t [« activate]
/@ not_reset] a; » deactivat %

Figure 7.3: Smart Card as a Finite State Automaton

will give precise definitions for each state.

(7.7) Po = qo D activate afin ¢

¢1 = Jaa v fau V fare
(7.8a) fo. =@ D not_reset afing
(7.8b) fo, =@ D deactivate a fin g

(7.8¢c) fo. =@ D reset afing
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(7.9a)
(7.9b)
(7.9¢)
(7.9d)

(7.9e)

(7.10a)
(7.10Db)
(7.10c)
(7.10d)
(7.10e)

(7.10f)

D2 = fopa V S V fase V Sapa V S
Jaoe = @2 D reset afing
fay = @2 D not_reset afing
Jioe = q2 D deactivate A fin g
fay = q2 D authenticate a fin g3

fee = @2 D not_authent A fin ¢4

¢3 = f%a v f%b v f%c v f%d v f%e v f%f

f4sa = @3 DO deactivate A fin g
f4s, = @3 D not_reset afing
fese =q3 D reset afing
fosy = q3 O command A fin g;
fes. = q3 DO authenticate A fin g;

fas; = @3 D mnot_authent A fin g,
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(7.11a)
(7.11b)
(7.11c)
(7.11d)

(7.11e)

(7.12a)
(7.12b)

(7.12c)

(7.13)

¢4 = fq4a v fQ4b v fQ4c v fQ4d v fq4e

faue = qu D authenticate a fin g3
fow = @1 D reset afing
fae = @1 D not_reset Afings
faus =@ D deactivate A fin gg

fae = @1 D not_authent A fin g7

¢5 = f%a Vv fng v fq5c
Jese =@ D reset afing
f4s, = @5 D not_reset A fin g;

fase = @5 D deactivate a fin gg

6 = qs¢ D activate fin g;
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(7.14a)
(7.14b)
(7.14c)
(7.14d)

(7.14€)

(7.15a)
(7.15b)

(7.15¢)

(7.16)

(7.17)

o7 = fQ7a v fQ7b v fq7c v fqm v fq7e

fera = qr D authenticate a fin g3
fom = @7 D reset afing;
fore = @7 D not_reset A fin gg
f4a = gz D deactivate A fin g

fer. = @7 D not_authent A fin ¢

¢8 = qua v fng v fqgc
Jusa = qs D reset afing;
fas, = @3 D not_reset A fin gg

Jase = qs D deactivate A fin gg

9 = qo D activate fin gs

¢10 = q10 D) empty A fln q10
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| can easily show that, in conjunction to the natural cooditi

qo A any*a

which says that “I start frong, and | only use the commands froamy ”, the formulas
representing the automaton imply the top-level requirds®ey(; 2), Req(z 3), Reqr.4)and

Req7 5 via sequential composition, i.e. the following theoremdsol

Theorem 5 The formula defined b§7.6) is a refinement for the conjunction of the for-

mulas defined by7.2), (7.3), (7.4)and (7.5). In other words,

Req.2) n Requ.a) n Req.an Reqrs) T qo A any™ A @

Proof (Theorem 5) | will show that the following two refinements ¢hol

Reqz72)C qo A any™ A @

Reqrs)E qo A any”™ A @

The rest can be proven with similar techniques so | will ngeghe full proof here.

Lemma 7

gorany A ® DO Requ



CHAPTER 7. A Case Study — Smart Card Application 150

Proof (Lemma 7) | will recall that, following
P = F DOP
in ITL I can infer that

F OPD>Q = F OEPD>Q =

= F 0O0OPD>OQ = F 0OP DO

and having in mind that bot and Req(7.2) have the fornid P, it will be sufficient for the

lemma to show

10
(7.18) gy A any™ A O /\;O ¢;inF;reset D

F D <O(activate; 7 @deactivate),
whereF D finite. | will first show that
(7.19) any* A O /\Zo ¢i DO [B)(deactivate;any) D (any = activate)).
| will recall (7.8b), (7.9¢), (7.10a), (7.11d), (7.12c),14d), (7.15c) which give me

10
(7.20)  any* A O /\‘_0 ¢; O B(deactivate D (fin g v fin gg v fin go)).
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Now | will combine (7.20) with (7.7), (7.13) and (7.16) by ngithe compositional proof
rule (3.3) in section 3.5 and this will give me (7.19). It skibbe obvious by now that |

can prove (7.18) by contradiction. Let me assume that foresbmF, and F3
10
go A any” A O /\;0 ¢; A F ;reset n (F = [ ;activate ; Iy ; deactivate ; F})

Having any* in mind | can guarantee that as with and F,, F3 D any*. Of course,
I3 D morebecause otherwise | would have hixghctivate ; reset which contradicts
with (7.19) and alsd¥s D finite. Again (7.19) gives me that; O activate; F’

and forF” | can apply the same reasoning. However, the length’a$é smaller than the

length of F3, i.e. | can conclude (7.18) and this proves lemma 7. |

Lemma 8

gorany A ® DO Requs)

Proof (Lemma 8) Following the same argument as with lemma 7 | carttsstyit will be

sufficient for the lemma to show

(7.21)

10
Go A any” A O /\ . ¢; A (not_authent ; F] ;not_authent ; F; ;not_authent ; F3) A
7=
—(F} D ®authenticate) n =(F, D @®authenticate)

D (F3 D (—=<Ocommand))
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At this point | only need to note that after thnreet _authent commands, | must end-up
in ¢10 and one look at (7.17) on page 148 is sufficient for the lemma. [

This proves the theorem. |

7.5 “Smart Card — Reader” Split

| have shown the correct behaviour of the system as a wholé ama need to consider
the components involved, namely the smart card and the reaitle the communication
between them. For that purpose | will need to define the iaterbetween them. | will
refer here to Figure 3.1 on page 27 where | will see that thim$aStep 1.

An inspection of figure 7.1 on page 137 gives me a good idea at wie interface
should look like. | have 8 pins between the card and the reade6 of them are used.
Therefore | will use these pins as shared variables betwestwo components of my
system.

The description of the standard [91] tells me that all vd&ali.., RST, CLK, Gnd, Vg,
andI/0 are boolean and even gives me the actual electrical chastict® which can
also be added as requirements at this point. However | wilgoan that details and will
simply use the notatiow,. for high and-v.. for low level on thev,. pin.

However, for thedifferent statesqy, g and gy to be distinguishable, the smart card
should always know how many unsuccessful authenticatioasethave been since the

time of the last successful one. This leads me to introdu@aldiiional state variabBLK



CHAPTER 7. A Case Study — Smart Card Application 153
which will keep the number of these unsuccessful authemitsiand the definition of it
shall begy(BLK) = 0, ¢s(BLK) = 1 andgy(BLK) = 2.

| am now ready to formalise the different procedures invdlvethe operation of the

smart card.

e activate is described in the standard [91] as follows:

— RST is in low state; Here | will change this to high and will bringetRST to

low at the beginning of theeset procedure.
— V.. shall be powered and shall stay poweredddhctivate
— I/0in the interface device shall be put in reception mode, igh btate;
— Vyp shall be raised to low state;

— CLK shall be provided with a suitable and stable clock wteéctivate

| will need to keep the definitions regarding the andCLK true over every interval

bounded byctivate anddeactivate. Therefore, to reduce the specification, we

will assume

(7.22)  DO(activate; F';deactivate DO (F D @ V. A clock(CLK))
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where the definition oflock is as follows

clock(CLK) = (CLK gets—CLK)

and now | can define the processtivate in ITL as the following interval and

finite formula.

activate = finite A @ (RST) A O(@ I/0) A @ (—V,,) A Stable (BLK)

where | can splibctivate into two subpartactivate, andactivate, for the

reader and the card correspondingly.

activate, = finite A @(RST) A O(@ I/0) A B (V)

activate. = stable (BLK)

and where | can compositionally show

go O activateafingg L gy D activate, r activate.  fin ¢;
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which is further refined by the conjunction of

Qo » Ass, A activate. D activate, A fin g

and

Qo A Ass. A activate. D activate, fin ¢

whereAss, = activate, is an assumption for the reader aAds. = activate,

is an assumption for the card and in the mean timeivate’ is an implementation
for the reader andctivate’ implements the smart card. As it may be now notice-
able that the card and the reader assume the requiremetigiiocounterparts for
their correct work. It may be obvious now that the implemeataof the reader
activate! is best suited for software and the implementation for tharsiward

activate! must be hardware.

e Again following the standardieactivate is given as

— State low OrRST;
— State low OICLK;
— Vpp low;

— State low ort/0;
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— V. low;

which can easily be defined as the possibly infinite formula

deactivate = @ (=RST A =CLK A =V, A =I/0 A =V, ) A Stable (BLK)

As with activate | can split and formulate the components compositionally in

deactivate, = @ (—RST A =CLK A =V, A =I/0 A V)

deactivate. = stable (BLK)

and | can again compositionally show

q1 O deactivate nfingg L ¢ D deactivate, A deactivate. A fin ¢

which is further refined by the conjunction of

q1 A Ass, A deactivate’ D deactivate, A fin g

and

q1 A Ass. n deactivate’. D deactivate. A fin g
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where Ass, = deactivate, and Ass, = deactivate, are assumptions for the
reader and the card correspondingly and in the meandiaetivate’ is an im-
plementation for the reader addactivate’ implements the smart card with the
implementation of the readéeactivate’ as software and the implementation for

the smart cardeactivate’ as hardware.

It might be a good place to add here that betlhivate’ anddeactivate’ imple-
ment one and the same ITL and Tempura conststaitle which is easily imple-
mented by non-volatile memory cell since the value theretreusvive—v.., i.e.

power down.

e Turning my attention towardseset, | see the following in the standard

— RST in low for at leas#400 clock cycles;

— State high orf/0, i.e. reception mode;

— Vpp low;

— BLK is stable;

In addition, the standard says that theset procedure must complete #9000

clock cycles, i.elen(80000) for the ITL/Tempura specification since a clock cycle

takes an interval with length 2 — one fGLK and one for-CLK.
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This requirement is formalised by the following finite forlau

reset = @ (V) A stable (BLK) A (Request eset; ResSponsereset)

whereRequest peser aNAd Response,qse. are defined by

Request eser =3t » (t > 40000 A len(2t) A @ (—RST A I/0));
3t « (400 < t < 40000 A len(2t) » @ (RST  1/0))

Responseresey =M RST A (L;H;H;L;len(3etu);L;L;H)

and where. = len(etu) » @ —I/0,H = len(etu) » @ I/0 andetu = 744 stands
for Elementary Unit Time as defined by [91]. If | denot@j,.se. = (len(2¢) a
(—RST A I/0));(len(2¢”) » @ (RST A I/0)) wherec' = 40000 andc” = 400, then

| will obviously have Request eser T Teqreser- | Will NOW Need to split the specifi-
cation forreset between the card and the reader and therefore | will needitzede
thereset, = reqreses ; l€N(10etu) andreset. = len(2(¢' + ")) ; Responsereset
parts for the reader and the card correspondingly. Haviligtlse parts between the

card and the reader, | will need to compositionally rettaget which is obviously

refined by the conjunction of the following two assumptia@wenitment pairs

g1 D resetafingg C ¢ D reset, nreset.afing
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which is further refined by the conjunction of

q1 A Ass, A reset!. D reset, A fin g

and

q1 A Ass. n reset!, D reset. A fin ¢

where Ass, = reset,. is an assumption for the reader aAds. = reset, is an
assumption for the card and in the mean tireget’ is an implementation for the
reader andeset’ implements the smart card with the implementation of thdeea

reset! as software and the implementation for the smart eargt’ as hardware.

e With not_reset | have very little difficulties because of the ability of ITh hegate

behaviour.

not_reset = M@ (V) A stable (BLK) A (Requestyeser; Failed Responsereset )

and where

Failed Responsereses = @ RST A —(L;H;H; L;len(3etu) ;L ;L;H)
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and as withreset | can give the definitions fonot_reset, = reset,, i.e. the
reader behaves as for a normal reset,tdreset, = len(2(¢' + ¢));
Failed Response,qset, 1.€. the card fails to reset and the compositional refingmen

for the parts of the specification for the card and the reader.

g2 D not_reset rfingg, C ¢» D not_reset, Anot_reset. A fin ¢

which is further refined by the conjunction of

(7.23) ¢ » Ass, nnot_reset. D not_reset, fin g
and
(7.24) @ A Ass. A not_reset. D not_reset. A fin g

whereAss, = not_reset, is an assumption for the reader atgls, = not_reset,

is an assumption for the card and in the mean tistereset’ is an implementation
for the reader andot_reset’ implements the smart card with the implementation
of the reademot_reset’ as software and the implementation for the smart card

not_reset’ as hardware.

In very similar fashion, I can go through all the commands stades shown on the au-
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tomaton in figure 7.3. This will give me a set of equations &mtio (7.23) and (7.24).
This set will serve as a requirement for the actual implesmugon, i.e. all formulas of the
form reset’ andreset’ can be developed into real hardware and software to sakisfy t

requirements of this set.

7.6 The Refinement into Tempura

| will go further and develop only one of the commands thatdael should be perform-
ing. | will choose the commanedncrypt as a computationally demanding one. This

corresponds to the hardware branch of Step 2 from FigurerBghge 27.

Let me see how the specification for that will look like. | kndiwe general form of

the specification for @ommand and therefore

g3 D encrypt fin g3

where

encrypt =@ (—Vy;,) A stable (BLK) A
(ComCode(encrypt) ; ACK ; (PlainData ; ACK)" 12Ptes. 1* - g,

(EncrData; ACK)r12byes
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Here | assume that'omCode returns the command code for the given instructid@’, K’
is Acknowledge (in some form or anotherylainData is the data to be encrypted,
EncrData is the result of the encryption and it is acknowledged evetg bor 12 octets

(bytes).

I now need to split this specification between the readerlaadard, i.e. | will have to
specifyencrypt, andencrypt, S.t.encrypt, A encrypt, O encrypt. Forthat reason
| will need to specify the mechanism for communication betwthe two modules. | will
build this mechanism from 2 primitives, namely.d Bit and Rcv Bit. Single bit can be

transmitted via th& /0 channel by

SndBit(b) =if (b= 0) then L else H

RevBit(b) ;len(%“ “1):bi=1/0; |en(et7“)

| only have to remember thdtcv Bit takes a memory variable as an argument. These

definitions guarantee
SndBit(a) n RevBit(b) D fin(a =b)

and can easily be generalised for a whole byte for examplex@ono loss of generality

| will write Snd and Rcv whose arguments will be bytes. Now | can specify the parts for
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the card and the reader.

encrypt, =@ (=Vy,) A (Snd(encrypt) ; Rev(ACK);
(Snd(PlainData) ; Rev(ACK))P28Yes. (while L do true);

9

len(H) ; (Rev(EncrData); Snd(ACK))for 12 byte%

and

encrypt, = stable (BLK) A (Rcv(encrypt) ; Snd(ACK);
(Rev(PlainData) ; Snd(ACK))er 12 bytes
(L* afin(EncrData = PlainData® mod M)) ; H;

(Snd(EncrData); Rev(ACK))fer 12 byees

where of course | have to make sure thaicr Data is the encryption of thé’lain Data,
i.e. EncrData = PlainData® mod M is the RSA transformation. Now | can combine

the so definedncrypt, andencrypt,. into the compositional specifications

(7.25) g3 A Ass, n encrypt’ D encrypt, A fin g
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and

(7.26) q3 A Ass A encrypt. D encrypt, A fin g3

where Ass, = encrypt, is an assumption for the reader adds. = encrypt, is an
assumption for the card and in the mean tismerypt’ is an implementation for the

reader anéncrypt’ implements the smart card.

Going further, | can develop thexcrypt! implementation so that it fits in (7.26), i.e.
| need to show how exactly | willimplemenhcrypt, havingAss. = encrypt, in mind
as well. It is fairly straightforward to refinstable (BLK). All | need to do is declare a

memory variablé/s x with

(727) EIVBLK « frue.

Next | must refineRcv(encrypt) andSnd(ACK). All | need to do is watch out for the

leadingLHHL sequence and this is done by

(7.28) H*;L;H;H;L; (Codeencrypr » lEN(3€tu)) ;L;L;H

and the idea is that if the card does not put the same sequertbe /0 line, then this

will result in false
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Acknowledgement is easy to put on a line. It is the same a8) & with change in

the code. | have

(7.29) H*;L;H;H;L;(Codeack »len(3etu));L;L;H

For Rev(PlainData) | will need to declare a memory variable and | will naméit
for plain text. In addition7 is needed later in the specification, so it must be a global one
The receive process can be specified by receiving each bitdodlly and acknowledging

the bytes in between. So | ha¥gare the bits and

(7.30) Rev(Ty) 5 Rev(Th) 5 Rev(T3) 5 Rev(T3) 5 Rev(Ty);

Rev(T5) 5 Rev(7Zg) 5 Rev(77) 5 Snd(ACK)

and | can repeat the same sequence for the rest of the 12 bytes.

I will have to implement the actual encryption now. Here llwdference to the en-

crypted data ag’.

(7.31) X =1

(I/0=0AX :=X «T mod M)°

and all that is left is to send the encrypted data and checkrf@cknowledgement on the
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way, which | already know how to do. Combining all specifioas (7.27), (7.28), (7.29),

(7.30) and (7.31) into one gives me

(7.32) encrypt’ = Ik o true s 37, X o
(H*;L;H;H;L; (Codeencryps A l€N(3etu)) ;L ;L H;
H*;L;H;H;L; (Codeack ~len(3etu));L;L;H;
Rcv(7y) ; Rev(Ty) 5 Rev(7T3) 5 Rev(73) 5 Rev(7y);

Rev(T5) ; Rev(Ts) 5 Rev(Tq) ; Snd(ACK);

X =1;
(I/0=0AX:=X T mod M)*; H;
Snd(Xp) ; Snd(Xy) ; Snd(Xy) ; Snd(AXs) ; Snd(Xy);

Snd(Xs) ; Snd(Xg) ; Snd(X;) ; Rev(ACK) ;.. .)

It is now quite obvious that the specification faicrypt! is deterministic and con-
crete, i.e. this is a Tempura specification which | can imgetnn Verilog. The... in
the specification are for the repeatRdv and Snd statements which are similar to what |

have in (7.32).
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7.7 The Refinement into Verilog

Finally, | can perform Step 3, or rather the hardware part, &fam Figure 3.1 on page 27,

where | give the refinement into Verilog.

There are several important stages in (7.32). The first otieibeginningi* ; L. | can
easily show the refinement &f ; f where—(f > ®HT), i.e. fdoes not start witH. Let

P be the following program.

module H*; f(I/0,CLK);
reg i;
initial begin

i=0;

while (I/0 = 1) begin
i=-etu;
while (I/0 =1 and i > 0) begin

Q(CLK); i=1—1;

end

end

if (1 <=0) f ; endmodule
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| will show that if £ is refinement forf in the sense thaf T ||f ||, then | have
H*; f C |[P],i.e.P isrefinement off* ; f. The translation of into L7 + will be the

following.

dInitial.active, T ime, T, Disable
clock(Disable) n O(Disable = Initial.active) nT = L
{
(Z := 0 A Initial.active = true);
while (I/0=1) do (
(Z := etu A Initial.active = true);
while (I/0=1AZ > 0) do (
while (- ~ (CLK)) do (Initial.active = falsen skip);

(Z :=Z7 — 1 A Initial.active = true);

);

if (7 <= 0) then ||£ ||;

| can provel*; f C ||P || by considering two cases. First, | will start with the innesh
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while which, assumingld<& ~ (CLK) — a global assumption guaranteed by (7.22) —

gives me

while (= ~ (CLK)) do (Initial.active = falsea skip) O stable (CLK).

Turning my attention to the middiehile, it is quite obvious that

(Z := etu n Initial.active = true);
while (I/0=14Z > 0) do (
stable (CLK);

(Z :=7Z — 1 a Initial.active = true);

>
finiten (I/0=1AZ > 0 A stable (CLK))" A
fin(I/0=0vZI<=0)arn<etunr(n<etu=Z>0)
D

n=-ectu O H

for somen. The last implication uses the assumptidgs, = encrypt, where we
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have embedded the behaviour foranThe important part of the last formula is that if
| have less thamtu number of repetitions fofI/0 = 1 A Z > 0 A stable (CLK)), then
Z > 0. This obviously would have meant that there was a patitiah the line, i.e. the

behaviour of the reader is unexpected.

The outemwhile is now fairly simple. | have there

while (I/0=1)doH D H"

and with the last check for complelieall the way through, i.eif (Z <= 0) then || || |

can get the desireid ; f.

On the way, | have shown the refinementaindH which is all based on

1=-etu;
while (I/0 =bit and i > 0) begin
Q(CLK); i=1—1;

end

wherebit is 0 or 1 for the appropriate cases.

The refinement fo6nd and Rcv is even simpler. | only need to remember that

SndBit(b) = if (b = 0) then L else H
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and in this case the refinementiodndH will be as follows

i=etu;I/0:=Db;

while (i > 0) begin @Q(CLK); i =1i—1 ;end

whereb will be 0 or 1 for the appropriate case. The difference in gfenement here is
that in the previous case | had to check if the opposite sideyi case the reader, kept the

I/0linein O or 1 for the designated time efu. Here | implicitly assign this value to it.

The refinement oRcv, where

t t
RevBit(b) = Ien(% ~1):b:=1/0; Ien(%)

is as follows

i=-etu/2-1;
while (i > 0) begin @Q(CLK); i=1—1 ; end
b:=1I/0 ;i=etu/2;

while (i > 0) begin @Q(CLK); i=1—1 ; end

and the proof that this is the refinement can be easily defiged the proof fori* ; f

above.
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The only part of (7.32) that still needs implementation imiMg is the part where the
actual encryption is performed, i.e. (7.31). However, thian obvious while construct

since thef° form and poses no difficulties in the refinement. Namely | have

x=1;i=¢e;

while (1 > 0) begin I/0=0; x =x*TmodM ; end

for the refinement of the actual encryption.

7.8 Summary

| believe the case study in this chapter is industriallyvate. The development process
goes through all major steps of my initial methodology fodesign as stated in chapter 3
and figure 3.1 and | prove properties of interest about theesyst every point of the
refinement. The sheer size of the case study prevented mepinsuing the final result
in its completeness. However, | hope the reader will be cored that the practicality of

my approach has been successfully demonstrated.



Chapter 8

Conclusion

8.1 Vision

| started this project with a vision for @@mpositionaimethodology which would allow
me to blend software and hardware in a seamless way. | alsedaion a methodology
with built-in rigorous reasoning about the design proceskthe properties of the required
system.

The benefits of such an approach could be viewed in two ways. cbmpositional
theory [88, 35, 19, 17, 65, 63] states that | would be ableasaa about a system, or any

of its subsystems, within its context. Thus | can guarantee:

1. asystem that will co-operate with its intended environhaad will not be a closed
component but rather an open one,

173
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2. a black-box abstraction where | view a system, or any adutssystems, as a pair

of an interface and a behaviour,

3. the ability to infer properties about the system from trapprties of its subsystems

and

4. the ability to derive requirements for the subsystemsftioe requirements towards

the system as a whole.

The first two have a profound effect on the usability of theigiesd system. The view
that a system should be nothing more than a pair of an ineedad a behaviour allows
me to say that any environment that falls within the assuongtof the interface and the
behaviour will be a suitable match for the system; therefas@l simply “connect” it
with the environment and “plug-and-play” with it. Also, tkeupling of the environment
and the system enforces a reactive computational model oq@grsince the communi-
cation (albeit synchronous or asynchronous) must be basedessages and/or events.
Therefore, the underlying computational model has to cosreeraaction to the messages
and/or events exchanged between the environment and tleersys

The last two allow me to incorporate two types of design, ndgn@p-down and
bottom-up design, in a systematic way. Thus, if | can infeperties of the system as a
whole from the properties of its components; then | can canstarger systems out of
smaller parts and this facilitates reuse, bottom-up desighbackwards engineering. On

the other hand, if | can derive the requirements for the carepts from the requirements
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towards the whole system, then | enable top-down design@méifd engineering.

It is interesting to note here that the synthesis betweemot®m-up and top-down
designs gives me another possible alley for exploration e-atbstraction of requirements
from an existing system, combined with further re-develepm— and this results in
re-engineering and migration.

The other important aspect of my vision was the rigorousamiag about the design
process and the properties of the designed system. It has saill that our expecta-
tions towards the stability, reliability and correctnesthe systems we use are constantly
increasing. More and more activities now depend on the coperformance of a com-
puter system of some sort and we seem to have little tolerfmmezrashes, incorrect or
unexpected behaviour, down-time and unavailability. | tad this level of expectation
towards the system not only in safety-critical applicasiomhere lives could be at risk, but
also in business-critical environments, where the suhgf/a whole organisation might
depend on the correct and expected performance of the yimdpdomputer infrastruc-
ture.

My second fundamental vision was for a methodology that diailbw me to specify
a system in a very abstract way regardless of its intendgettamplementation. | be-
lieve that starting from a highly abstract representatibthe system allows me to blur
the differences between hardware and software. At the bagyr am interested in the
desired behaviour only and this makes no distinction batMeehnologies, architectures,

communication paradigms, etc. Although this may seem sitiee, it gives me a chance
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to think about the system in terms of behaviour, interfagguirement, components, etc.,
rather than programming or hardware description langusmerce code or net-list size,
involved software or hardware technologies, etc. Only ateriIstage of the development
| start taking into consideration other important issueshsas the issue of underlying

architecture.

8.2 Achievement

In chapter 3 | clearly state the overall methodology for esign as depicted in figure 3.1
on page 27. | start from a high-level and abstract specifinaind then | progress with
the development througtorrectness preservingfinement steps.

Throughout the whole project, my main high-level specifamatanguage and mech-
anism for reasoning has been the Interval Temporal Logic)(IThis has been the bed-
rock of my methodology and | have tried to relate all my re@sgmo that.

Once | capture the desired properties of the system with arfdiimula | can prove
that they are not conflicting by using the Tempura tool. Whamlsatisfied with the level
of correctness with which | have captured the requiremegemnlthen start developing
the system by using the set of compositional refinement lawsemted in section 3.6
pages 48 onwards. The desired result is a deterministieseptation of the system in
Tempura, which is an executable subset of ITL.

At this point | reason about the architecture that is mogesuor the application and
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| obtain a set of Tempura modules. Again | can use the toolsinvihe Tempura tool to
simulate and verify properties about the obtained Tempaouaia cin section 3.6.2 | explain
how | can simulate and analyse Tempura code within the Teanjpad. A screen dump
of the tool is shown in figure 8.1 on page 185.

The next step of the methodology is to select which Tempurdules will be imple-
mented in hardware and which in software. Only at this stageabnsider technology
related issues and | can use a multitude of techniques fadidgdhe hardware-software
split [66, 47, 48, 55, 96]. Here | can also discuss commuianassues between the dif-
ferent modules and compositionally verify them all tharkkheassumption-commitment
style refinement rules of ITL.

This is now the stage within my methodology when | have to talelevel of ab-
straction to real hardware and software, since | have toadfie hardware and the
software modules separately. As it has already been shdvenrefinement to soft-
ware [13, 88, 14, 16, 86] is achievable. Therefore | had taceantrate my efforts into
finding a way to refine the Tempura specifications into my hareéwdescription language
(HDL) of choice. This is where | realise the need for ITL basechantics for Verilog.

Once | have the abstraction gap between Tempura and Verildgdal, | can then use
the existing Register Transfer Layer (RTL) to netlist sw#ils tools and technologies via
commercially available synthesisers to achieve real hare\as on FPGA or ASIC.

However, there was a theoretical barrier | had to overcontkarprocess. The prob-

lem was that the basic syntax and semantics for ITL and Teanpgomot havenemory
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variables as explained in section 3.4.3 (pages 41 onwakdd)show there, | can conser-
vatively introduce memory variables and | can even provéa@otem 1 on page 43 that
they have the basic “memory” property of keeping their valuatil explicit assignment
operators change them.

What followed as a result was an ITL based semantics fordgii chapter 4. There
| consider both Behavioural and RTL statements, thus bnglgiet another abstraction
level gap within Verilog itself. Unlike most of the other appches [90, 89, 67, 30],
mine deals with a rich core of the language, whereas only sae like convenient but
non-essential constructs are left out.

Again in contrast to other attempts for the semantics ofldgri94], where different
semantical models are constructed for the different attsdralevels within the language,
| achieve a single ITL based formalism throughout my work hhelieve this facilitates
the refinement in a better way.

Admittedly, Verilog lacks a well accepted formal semanaegl therefore | felt the
need for a second perspective on the language. Two of the shdés of semantics are
denotational and operational. Since ITL provided me withadational semantics for
Verilog, | decided to construct an operational semantic&/évilog as well. Unlike most
of the commercially available simulators, my operatiorghantics isully parallel.

In chapter 5 | also formulate and prove several healthinesdittons on the opera-
tional semantics through theorems 1, 2 and 3 which | belibeelsl be necessary for any

formalism defining the operational semantics for Veriloginig a simulator or not. At
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the end of the chapter | show how the operational semanticbeaised for simulating
a program in Verilog, thus | show that the semantics is a blogfor a simulator for the

language.

It was logical, after defining two different formalisms albtue semantics for Verilog,
to prove that they are equivalent in the sense that the bedagtescribed by the denota-
tional semantics is precisely the one generated by the tpeahsemantics. This would
guarantee the uniformity and boost the confidence in théaarthiness of my work. The

outline of the proof is given in section 6.2 and the full distare spelled out in section 6.3.

The final chapter of my exposé introduces an industrialgmant case study of a smart
card application. It involves RSA asymmetrical encryptéord decryption on the smart
card chip itself. The rationale for this is that the smardcean protect the private key
best and therefore is the perfect candidate for such ancapipin. | show there how | can
formalise and structurise the problem by using the refinérasvs given in section 3.6.

This allows me to achieve a high level of modularity.

It was obvious to me that the case study was a formidable groje its own and
therefore | used it as a “proof-of-concept” only. | have givibe refinement to only a
small part of the whole specification. However, | believet ti@ principles throughout
the case study are clear and applicable in industriallydsggplications as well. | also
show there how | can use my ITL based semantics to refine a Tanspecification into

a program in Verilog.
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8.3 Related Work

Although Hardware/Software Codesign is a young disciphni¢h the earliest reference
dated 1992 at the First International Workshop on Hardvgariware Codesign [95],

there is a growing body of work devoted to the topic.

Figure 2.1 gives a typical design flow widely adopted as atwainidea. It quickly
became clear that this design flow has many practical prablaherited from the very
early design decision taken in accordance to it. For exanspl@munication paradigms,
architecture and Hardware/Software split within the syséee chosen early in the design
process without any validation of their suitability. Almaal of these design decisions

rely mostly on intuition and best practices rather thannogs reasoning.

Another problem with the early approach could be descrilséthte integration” syn-
drome, i.e. the system integration occurs only after allsygiems have been developed
to a considerable extend. This is considered very late inléisggn cycle, because only at
this late stage the designer can validate and justify thgdekecisions taken at the very
beginning of the development. This problem is particulariportant because it magnifies

the difficulty and the complexity of a project witthangingsystem requirements.

One major thread within the Hardware/Software Codesigeares and development
has been the idea ob-simulation77, 2, 23]. This approach tries (systematically and/or
heuristically) to break the problem into smaller parts ¢pobiblems, tasks, computation

entities, basic scheduling blocks, etc.) and to allocaté eart into software or hardware.
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The core objective is to find the best configuration, with eespo speed of execution and
communication, between the software code and the hardw@r€/RPGA implementa-
tion. In effect, we can view the problem as granularity antinojsation [47, 48, 55, 96].

The architecture selection is an important issue withinHbhedware/Software Code-
sign. Generally we can assume that it is a mapping processdystem’s functionality
to a set of (predefined) components, i.e. targeted arcarectsing this technique, suc-
cessful automation has been achieved in applicationsuimgh memory hierarchy or an
I/O subsystem design based on standard components. Inoaddithat, there are some
alternative approaches on retargetable compilation ptf9n an abstract partitioning for
co-design [42, 43, 69, 81].

Temporal and Spatial Partitioning as shown in figure 2.4 ayefd22 is another im-
portant and interesting area of research. It achieves flixitvhich, however, does not
come for free. A scheduler is a major part and it decides “erflifi how to partition the
code into compiled program for a microprocessor and whidhbeiused to reconfigure
the FPGA. The particularly interesting area of researckeaonfigurable processors [52]
implements this idea.

Several different styles of semantics for Verilog [67, 30, 89] have been proposed.
However, the complexity of the language proves a difficultlidnge for some and they
consider subsets of the language, while others choose teewseal different semantics
for different levels of abstraction within the language.

My work contributes to the body of research in HardwareABafe Codesign in sev-
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eral ways:

1. I develop a unifying and compositional framework for Csida based on pairs of

assumptions and commitments.

2. | propose stepwise formal refinement as a sound tool focanesct development

of mixed hardware/software systems.

3. luse Interval Temporal Logic (ITL) as a bedrock for my @asg.

4. | integrate simulation in my framework through the exigtTempura tool.

5. | construct a denotational semantics for Verilog whiclthisn used to define the
refinement relation between ITL, Behavioural Verilog and_RErilog in a formal

manner.

6. | construct an operational semantics for Verilog, definé prove several health-
iness conditions and show full parallelism for it. It canv&eas a blueprint for a
real simulator for Verilog whose full parallelism and forlmaderpinning would be

unique.

7. | prove equivalence between our denotational and opatisemantics for the

language.

8. | test my theory on an industrially relevant case studyARSymmetrical encryp-

tion is performed on a smart card chip for improved security.



CHAPTER 8. Conclusion 183

8.4 Future Work

| can see two major possible expansions of this work — a thieateind a practical one.

The careful reader would notice that the operational seicsgas presented here can
capture a much bigger set of constructs. The obvious nosetuative extension could be
sentences which combine Behavioural and RTL constructseseiglly, rather than just
in parallel as it is within the language now. Currently Mlegildoes not have constructs
like

initial statement ; assign

that one would like to interpret as an atom which sets somiahas initially and then

proceeds with the RTL behaviour of thesign statement.

A more interesting combination of this approach would haserb

assign ;initial statement

where the possibly infinite behaviour agsign is followed by another statement. One
can use this combination to exprdaslt tolerance and recovery.e. if theassign fails,

then theinitial statement will take care of the consequences.

Another important issue is a possilaligebraicsemantics for Verilog. We will be able
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to define an algebraic equation of the following kind

wherev; andv, are two Verilog constructs, by proving that their denotagilcsemantical
meanings are equivalent, i.e.

Vel = V2 i

or by proving that the operational runs generated by the twsitucts are equivalent.

One can view the latter ds-simulationbetween the two sentences.

An algebraic semantics of this form could be used for opttnis, since the algebraic
style semantics involves a system of equations, i.e. elpneas, therefore we can use
such semantics for equivalently transforming a Veriloggpamn into a “better” form. Here

“better” might mean “faster”, “smaller” or “cheaper” impteentation in real hardware.

A practical set of refinement laws to guide our developetregihmethodology is also
desirable. The denotational semantics for Verilog wilveeais a definitive criteria for the
soundness of each refinement law as stated by (4.1). Howeeexiill need to develop

many more case studies and try our theory on them beforeiolgitpracticality”.

There could be some practical work done to extend this profexshown, our oper-
ational semantics is, in effect, a simulator for the langudkcherefore, we can attempt to

develop such a simulator. Thell parallelismwould have made it unique among all other
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Verilog simulators available. In addition to that, we coutdegrate the simulator with
Tempura (see figures 8.1 above and 3.2 on page 52) which aategtdow the simulator

will compare with other known simulators.
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