1 Grammar

tu=int|t — tltxt (1)
et = i|z|Az.ellet z = ey in esleren| ~ () (2)
¥ =iz \z.cllet = e; in egleresllet rec x = e; in ey|(e!) 3

2 Typing Judgements

_ (INT) F“(f):t (VAR) I‘O(rc):{t*::lz int [¢*xt*} (CSP)
T'Hi: int I'rhx:t Tlkz:t
'™ (z)=to _ F",rc:tglﬁeztl (LAM) F"‘Iyleo:tl—wy? F"ﬁel:tl (APP)
TEAz.eito—t . I'"H(eger):ta
I‘"Iﬁeo:ﬁ? F";z:tolzel:h (LET) Fo(f):t0—>t1;z:0to£ €o:ty Fo’f:(tl_’t?)ﬁel:tz (LETREC)
I'nH(letz=eg ineq):t1 ' letrec f(x)=eg ine;:ta

1t °..
Diret_(BRAC) Thelt(BSC)
TO(e):(t) Tlr~e:t

3 Notes

e LETREC is only valid in stage zero, which prevents the user from con-
structing a recursive function within a set of braces

e CSP is the only way to bring values from stage zero into stage one. CSP
cannot be applied to values whose type involves a lambda abstraction (ie
functions which could be recursive). Although an expression whose type
does not involve arrows can contain a recursive function, that expression
will be fully evaluated in stage zero and will persist across as a ground
value; this works for the same reason that lift ~ is sometimes necessary.
I need help proving this.

o I left out the typing rules for projection and tupling since they’re stan-
dard.

