
1 Grammar

t ::= int|t → t|t ? t (1)

e1 ::= i|x|λx.e|let x = e1 in e2|e1e2| ∼ (e0) (2)

e0 ::= i|x|λx.e|let x = e1 in e2|e1e2|let rec x = e1 in e2|〈e1〉 (3)

2 Typing Judgements

Γ
n

`i: int
(INT ) Γn(x)=t

Γn
n

`x:t
(V AR) Γ0(x)={t?::= int |t??t?}

Γ1
1
`x:t

(CSP )

Γn(x)=t0 Γn,x:t0
n

`e:t1

Γn
n

`λx.e:t0→t1
(LAM) Γn

n

`e0:t1→t2 Γn
n

`e1:t1

Γn
n

`(e0e1):t2
(APP )

Γn
n

`e0:t0 Γn;x:t0
n

`e1:t1

Γn
n

`( let x=e0 in e1):t1
(LET ) Γ0(f)=t0→t1;x:t0

0
`

0

e0:t1 Γ0,f :(t1→t2)
0
`e1:t2

Γ
0
` let rec f(x)=e0 in e1:t2

(LETREC)

Γ1
1
`e:t

Γ0
0
`〈e〉:〈t〉

(BRAC) Γ0
0
`e:〈t〉

Γ1
1
`∼e:t

(ESC)

3 Notes

• LETREC is only valid in stage zero, which prevents the user from con-
structing a recursive function within a set of braces

• CSP is the only way to bring values from stage zero into stage one. CSP
cannot be applied to values whose type involves a lambda abstraction (ie
functions which could be recursive). Although an expression whose type
does not involve arrows can contain a recursive function, that expression
will be fully evaluated in stage zero and will persist across as a ground
value; this works for the same reason that lift is sometimes necessary.
I need help proving this.

• I left out the typing rules for projection and tupling since they’re stan-
dard.

1


