
Meta-HDL:
A Multi-Stage Programming Language for Dynamically

Reconfigurable Hardware

Adam Megacz
UC Berkeley Statistical Computing Facility

megacz@stat.berkeley.edu

Abstract

We present Meta-HDL, a two-stage functional lan-
guage for writing software which dynamically syn-
thesizes and communicates with structurally special-
ized circuits. The associated type system ensures that
compiled programs cannot attempt to generate non-
synthesizable logic. We implement the system by mod-
ifying the MetaOCaml bytecode compiler/interpreter
to enforce our typing restrictions and emit synthesiz-
able JHDL netlists at runtime. Finally, we examine two
sample programs which demonstrate the wide degree
to which the generated circuits can vary based on run-
time inputs.

1 Overview

It is well documented that for a large variety of tasks,
reconfigurable logic such as FPGAs can drastically out-
perform software running on fixed-purpose processors
manufactured with the same technology [GNVV04].
Particular among these tasks is scenarios where part
of the input to the computation is available ahead of
time, or remains fixed during many iterations of the
computation.

Despite these advantages, reconfigurable logic is only
very rarely used in mainstream computing, even in
scenarios where it would be especially superior to soft-
ware.

1.1 Existing Work

The main impediment to widespread utilization of re-
configurable logic is the relative difficulty of writing
programs for it. The current generation of reconfig-
urable logic tools generally fall into three categories:

• Tools which treat reconfigurable logic as a lower-
density form of traditional hardware and re-use
tools designed for that medium (VHDL [LMS86],
Verilog [TM95]).

• Tools which attempt to translate code written in
popular, imperative programming languages to
circuitry [Ana] [Sod98]

• Tools which choose a software model that makes
data dependencies clear and does not encourage
the programmer to introduce artificial sequential-
ization [BCSS98] [SM01a] [LL95] [GL95] [LLC99].

The first class of tools includes those which work
on conventional hardware design languages such as
VHDL and Verilog. These tools give the designer ex-
ceptionally detailed control over the resulting circuitry,
offering extremely space-efficient designs. However,
developing a circuit with these tools is a much more la-
bor intensive task than writing software, and the skills
required are much less commonplace.

The second class of tools attempts to translate pro-
grams written in popular imperative languages into
circuitry. These tools are quite easy to use since the pro-
grammer does not need to learn a new language, but
the realization in hardware is often of extremely poor
quality, since heap structures (values of unbounded
size) are notoriously difficult to express spatially.

The third class of tools generally involves functional
languages with restrictions to prevent unbounded val-
ues and unbounded recursion. These tools are also
very easy to use and tend to lead to higher quality cir-
cuits since the programmer is aware of data dependen-
cies and is not encouraged to introduce artificial serial-
ization. Current work in this area has been focused
mainly on the design of static logic – logic which is not
specialized at runtime based on some portion of the
inputs. Existing work on runtime circuit specialization
has so far been limited to constant propagation [MS98]
[SM01b]. We are not aware of any work which makes
structural modifications at runtime beyond replacing
gates with constant inputs.

1.2 Barriers to Runtime Circuit Generation

One major barrier to dynamic logic synthesis in this
third class of tools is the lack of a staged type sys-
tem. Without a staged type system and cross-stage per-
sistence, the compiler cannot guarantee that recursive
functions will not “leak” from the first stage (software)
into synthesized logic, where they cannot be realized
efficiently.

One possible solution is to impose the same heap and
recursion restrictions on both stages (software as well

1

as hardware). However, some of the most interest-
ing applications of runtime circuit synthesis involve
the two stages cooperating, with each performing the
task it is best suited for. Software code performs
tasks which require general recursion and unbounded
heaps, using these facilities to generate highly cus-
tomized circuits which then in turn execute massively
parallel computations very efficiently. We will present
such an example later in this paper.

This model of cooperating stages was first introduced
in the software world with GeHB [TEX03], a language
in which a first stage program constructs a second
stage program with bounded heap usage suitable for
real-time applications.

2 Meta-HDL

Like MetaOCaml, Meta-HDL is an ML-derived lan-
guage allows a software programmer to use staging
annotations [TS97] to indicate that certain parts of a
program belong to a different stage. These annotated
blocks are first-class values which can be manipulated
and composed as the program executes.

In MetaOCaml, the !. operator indicates that the pro-
gram should compile a composed block into machine
code and execute it. In Meta-HDL, this operator in-
stead synthesizes circuitry from the composed block
and downloads it to the FPGA. This operation returns
a function which can be used like any other function;
it transparently sends its arguments to the reconfig-
urable fabric for processing and returns values drawn
from the FPGA’s output lines.

As the code inside the staging annotations uses a
subset of the full host language, there is no need
for the programmer to learn a new language. Fur-
thermore, passing data between software and hard-
ware using cross-stage persistence is completely trans-
parent. This makes it quite easy to test different po-
sitionings of the hardware/software boundary. Meta-
HDL shares MetaOCaml’s environment classifier infer-
ence [TN03] which ensures that the !. operator will
never be applied to open code (expressions with un-
bound variables).

Validity of circuits is checked at compile time. Al-
though the structure of circuits generated at runtime
can vary greatly depending on the inputs, there is no
need for runtime checks to ensure synthesizability.

2.1 Goals

Meta-HDL is not intended to be a comprehensive hard-
ware design language, or even the beginnings of one.
It deliberately sacrifices detailed control over synthesis
in order to present the programmer with an environ-
ment in which the second-stage (hardware) language
is a strict subset of the types and semantics of the fa-
miliar first-stage software language.

Currently, the barrier to adoption of reconfigurable
logic in the mainstream computing world is due
mainly to a scarcity of hardware design skills rather

than to the limitations of available programmable
logic devices. Meta-HDL attempts to trade off space-
efficient logic mapping in favor of a programming
model that is accessible and intuitive to the much
larger community of software programmers.

The model of using cross-stage persistence for
hardware-software communication was chosen in an-
ticipation of recent work in FPGA interconnects for
commodity hardware. Recent research projects such
as Pilchard [LLC+01] and TKDM [PP03] attach recon-
figurable logic directly to the host CPU’s memory bus.
This makes communication with the FPGA as efficient
as function calls between different parts of a program.
Since the costs of software-hardware communication
in these models are identical to the cost of software-
to-software function calls, it is reasonable to hide this
distinction from the programmer without an unrea-
sonable risk of introducing subtle performance bottle-
necks.

2.2 Core Contribution

This paper builds on existing work in synthesiz-
ing hardware from functional languages [BCSS98]
[SM01a] [LL95] [GL95] [LLC99] by extending those
models, providing three core contributions:

• A two stage language which enables synthe-
sis of hardware at runtime, including full struc-
tural specialization. Ground value types (inte-
gers, floats, tuples) are identical in both stages,
enabling cross-stage persistence as an intuitive
model for communication between hardware and
software.

• A formal specification of the type system and a
mapping of the language onto SAFL+. Together
these two formalizations prove that typechecked
programs cannot attempt to synthesize invalid
hardware at runtime.

• An implementation of the language using the
MetaOCaml compiler [CTHL03] which has been
modified to emit JHDL [BH98] program frag-
ments which are in turn simulated and synthe-
sized.

3 Multi-stage Programming

Multi-stage languages [NN92, JGS93, Tah99] provide
light-weight, high-level annotations that allow the pro-
grammer to break down computations into distinct
stages. This facility supports a natural and algorithmic
approach to program generation, where generation oc-
curs in a first stage, and the synthesized program is
executed during a second stage. The annotations are
a small set of constructs for the construction, combina-
tion, and execution of delayed computations. Standard
problems associated with program generation prob-
lems, such accidental variable capture and the repre-
sentation of programs, are completely hidden from the
programmer (c.f. [Tah99]).

2

The following simple program illustrates the three
key constructs provided by the multi-stage language
MetaOCaml [CTHL03]:

let rec power n x =
if n=0 then <1>

else <˜x * ˜(power (n-1) x)>
let power3 = <fun x -> ˜(power 3 <x>)>

Ignoring the staging annotations (brackets <e> and es-
capes ˜ e, the above code is a standard definition of
a function that computes xn, which is then used to
define the specialized function x3. Without staging,
the last step simply returns a function that would in-
voke the power function every time it gets invoked
with a value for x. In contrast, the staged version
will allow us to build a function that computes the
third power directly (that is, using only multiplica-
tion). To see how the staged annotations work, we
can start from the last statement in the code above.
Whereas a term fun x -> e x is a value, an anno-
tated term <fun x -> ˜(e <x>)> is not. Brackets
mean that we want to construct a future stage compu-
tation, and escapes mean that we want to perform an
immediate computation while building the bracketed
computation. In a multi-stage language, these anno-
tations are not hints, they are imperatives. Thus, the
application e <x> must to be performed even though
x is still an uninstantiated symbol. In the power ex-
ample, power 3 <x> is performed immediately, once
and for all, and not repeated every time we have a
new value for x . In the body of the definition of the
function power , the recursive application of power is
escaped to ensure its immediate execution in the first
stage. Evaluating the definition of power3 produces

<fun x -> x*x*x*1> .

General-purpose multi-stage languages provide
strong safety guarantees. For example, a program
generator written in such a language is not only
type-safe in the traditional sense, but the type system
also guarantees that any generated program will be type
safe. In this work, it is advocated as a practical, high-
level approach for taking advantage of dynamically
configurable hardware.

4 Formal Semantics of Meta-HDL

4.1 Syntax

The grammar for Meta-HDL is provided in Figure 1.

4.2 Type System

The typing judgements for Meta-HDL appear in Fig-
ure 2. Each type consists of a tuple (t, n) where t is the
type of the term and n is the stage (0 or 1) in which the
typing is valid.

The key points to notice in the type system are that
recursive let-bindings (LETREC) are only valid in the
first stage, and cross stage persistence (VARN) is only
permitted for ground types.

As a derivitave of MetaOCaml, our implementation in-
herits environment classifier inference [TN03], which
is required in order to ensure that the run operator is
not applied to open code (expressions with unbound
variables). The judgement for environment classifiers
are not included in the type system shown here.

4.3 Soundness

The type system we present ensures that no term in
the second stage will be bound to a recursive func-
tion, which the most crucial property for ensuring syn-
thesizability. To complete the proof that the result-
ing circuitry is realizable, we provide a formal transla-
tion (Figure 4) from the grammar of valid second-level
Meta-HDL terms into the grammar of SAFL+ [SM01a],
a language for which it has been established that all
programs can be synthesized.

In particular, our type system has ensured that the only
operators which can persist into the second stage are
primitive operators (those in the SAFL+ set a), so our
type judgements ensure the validity of the last line of
the translation ruleset. Additionally, by combination
of the BRAC and ESC typing rules we know that ∼ e
will evaluate to a valid e1 term, so the translation of
∼ e is simply the translation of the result of evaluating
e in the first stage.

e ::= x (4)
| i (5)
| a(e1, ..., ek) (6)
| if e1 then e2 else e3 (7)
| let x = e in e0 (8)

(9)

Figure 3: A closed subset of the grammar for SAFL+

i → i (10)
x → x (11)

true → 1 (12)
false → 0 (13)

let x = e in e → let x = e in e (14)
πie → aπ(e) (15)

(e, e) → apair(e, e) (16)

∼ (e0) → e↪→? (17)
ee → ae(e) (18)

(19)

Figure 4: Translation from level-two Meta-HDL terms
to SAFL+ terms

3

t ::= int|bool|float|t → t|t ? t (1)

e1 ::= i|f | true | false |+|- |* |+. |-. |*. |x|let x = e in e|ee|(e, e)|πie| ∼ (e0) (2)

e0 ::= i|f | true | false |+|- |*. |+. |-. |*. |x|let x = e in e|ee|(e, e)|πie|λx.e|let rec x = e in e|〈e1〉|run e (3)

Figure 1: The Grammar for Meta-HDL

Γ ` i : (int , n)
(INT)

Γ ` {* |+|- } : (int → int, n)
(IPRIM)

Γ ` f : (float , n)
(FLOAT)

Γ ` {*. |+. |-. } : (float → float, n)
(FPRIM)

Γ ` {true, false} : (bool , n)
(BOOL)

Γ ` e0 : (bool, n) Γ ` e1 : (t1, n) Γ ` e2 : (t1, n)

Γ ` (if e0 then e1 else e2) : (t1, n)
(IF)

Γ ` e : (t, 1)

Γ ` 〈e〉 : (〈t〉, 0)
(BRAC)

Γ ` e : (〈t〉, 0)

Γ `∼ e : (t, 1)
(ESC)

Γ ` e : (〈t〉, 0)

Γ ` (run e) : (t, 0)
(RUN)

Γ(x) = (t′ ::= {int|bool|float|t′ ? t′}, 0)

Γ ` x : (t, n)
(V ARN)

Γ(x) = (t, n)

Γ ` x : (t, n)
(V ARL)

Γ ` e0 : (bool, n) Γ ` e1 : (t1, n)

Γ ` (e0, e1) : (t0 ? t1, n)
(PAIR)

Γ ` e : (t1 ? t2, n)

Γ ` πie : ti
(PI)

Γ(x) = (t0, n) Γ, x : (t0, n) ` e : (t1, n)

Γ ` λx.e : (t0, 0) → (t1, 0)
(LAM)

Γ ` e0 : (t1, n) → (t2, n) Γ ` e1 : (t1, n)

Γ ` (e0e1) : (t2, n)
(APP)

Γ ` e0 : (t0, n) Γ; x : (t0, n) ` e1 : (t1, n)

Γ ` (let x = e0 in e1) : (t1, n)
(LET)

Γ(f) = (t0, 0) → t1; x : (t0, 0) ` e0 : (t1, 0) Γ, f : (t1 → t2, 0) ` e1 : (t2, 0)

Γ ` let rec f(x) = e0 in e1 : (t2, 0)
(LETREC)

Figure 2: The Meta-HDL Type System

4

import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;
import byucc.jhdl.Xilinx.Virtex.*;

public class MyCircuit extends Logic {
public static CellInterface[]

cell_interface = {
in("a0_1_1011", 64),
in("a1_2_1012", 64),
out("out", 1024),

};
public MyCircuit(Node parent,

Wire a0_1_1011,
Wire a1_2_1012,
Wire out) {

super(parent);
connect("out", out);
connect("a0_1_1011", a0_1_1011);
connect("a1_2_1012", a1_2_1012);
connect("a2_3_1013", a2_3_1013);
Wire param_1857 = z_17_1027;
Wire s_1600 = param_1857.range(63, 32);
Wire r_1599 = param_1857.range(31, 0);
Wire sym1 = wire(32);
new FPMult(this, s_20_1600,

constant(this, new BV(32,
Float.floatToIntBits(1.226))),
sym1, nc(1), 8, 0);

//

Figure 5: Sample JHDL output

5 Implementation

We have implemented the Meta-HDL system by
adding additional restrictions to MetaOCaml’s type
checking code to ensure typability under the judge-
ments presented in Figure 2.

The internal implementation of the !. operator (also
called run) was modified to spawn a JHDL process
and feed it the appropriate code to construct the circuit.
Figure 5 shows a sample fragment of this intermediate
code.

(* good *)
let rec permute k =

if k = 1 then 〈 fun n → n 〉
else 〈 fun n → n *

∼(permute (k−1)) (n−1)) 〉

Figure 6: A naive staging of the permute function

(* better; splits the problem space in half on each recursion *)
let rec permute k =

if k = 1 then
〈 fun n → n 〉

else if k mod 2 = 0 then
〈 fun n → (∼(permute k/2) n) *

(∼(permute k/2) (n − ∼(lift k/2))) 〉
else

〈 fun n → n * (∼(permute (k−1)) (n−1)) 〉

Figure 7: A better staging of permute with a depth of
log(k) multipliers

5.1 Examples

5.1.1 Permutation Computation

Figures 6, 7, and 8 show three different stagings of the
function permute , which computes n P k = n!

(n−k)!
.

The functions generate a circuit specialized to a partic-
ular value of k.

The first circuit (Figure 6) demonstrates a naive stag-
ing fo the permute function. If executed in software
on a serial processor, this staging would perform as
well as the others. However, since each iteration of the
recursion depends on all previous iterations, the criti-
cal path of the circuit contains O(k) multiplications in
sieres. This will yield a poor propagation delay.

The second circuit (Figure 7) shows an improved stag-
ing, where each recursion has an airty of 2, splitting the
problem space in half. Although a programmer with-
out hardware experience cannot be expected to under-
stand the details of gate placement and propagation
delay, it is quite easy to see that the two branches of the
recursion do not depend on each other. Thus it is rea-
sonable to expect a programmer with a minimal under-
standing of multithreaded or parallel programming to
be able to pick out and eliminate data dependencies in
a program, resulting in a circuit with a shorter critical
path.

Although the second circuit has only O(log k) multi-
plications on the critical path, it unfortunately threads
the decrement of the n argument serially through all
of the computations. The final staging (Figure 8) elim-
inates this dependency by precomputing the constant
values to subtract from n in each of the iteration. This
allows all of the add/subtract operations to be per-
formed in a single O(1)-time parallel operation, fol-
lowed by O(log k) multiplications.

Mycroft and Sharp discuss source-to-source transfor-

5

(* best; lifts the computation of the subtractive
amounts into the first stage *)

let rec permute k r =

if k = 1 then 〈 fun n → n − ∼(lift r) 〉
else if k mod 2 = 0 then
〈 fun n →

(∼(permute (k/2) (r+k/2)) n)
*

(∼(permute (k/2) r) n) 〉
else

〈 fun n → n *

∼(permute (k−1) (r+1)) (n− ∼(lift r)) 〉

Figure 8: A third staging which eliminates nonessen-
tial data dependencies

mations as a way of exploring the design space for iso-
lated circuits; Meta-HDL extends this technique to en-
compass the exploration of the space of possible hard-
ware/software partitionings 1.

5.1.2 Variable-Radix Fast Fourier Transform

Figure 9 shows the Meta-HDL source code for a more
complex example. This code constructs a Fast Fourier
Transform which can be specialized to an arbitrary
radix and arbitrary input window size at circuit syn-
thesis time. Below the code is a circuit diagram for
logic synthesized by running this code with radix=2
on an input window of 16 complex numbers.

Removing the memoize and
memoized continuation functions would leave
a perfectly normal single-stage OCaml program
(athough it has been written in continuation passing
style to make circuit-sharing easier). This program can
then be staged by adding only these few lines of code
to insert the staging annotations.

This program also performs staged memoization by let-
binding the results of a computation and executing a
continuation within the binding. This technique was
pioneered by (citation forthcoming) at Rice University.

6 Future Directions

In its current form, Meta-HDL is only useful for com-
binatorial circuits with no feedback. We would like

to extend this to accomodate tail recursion in the sec-
ond stage by building on the techniques pioneered in
SAFL+.

Subsequent work will focus on incrementally remov-
ing the restrictions on what kind of values can be
present in the second (hardware) stage. Each incre-
ment will require both new techniques for realizing the
functions in hardware as well as a refined type system
to permit these new values while continuing to pro-
hibit those which still cannot be realized. The relax-
ations we would like to attempt are:

• Permitting higher-order tail-call functions, but
without the ability to form new closures in hard-
ware. Initial investigations suggest that this could
be done by joining the sub-circuits representing
the individual functions with a bus in order to
transfer control between arbitrary pairs of func-
tions. However, this makes parallelization much
more complex.

• Permitting non-tail recursion. So long as no heap
structures (recursive values and values with un-
bounded size) can be created in the second stage,
memory allocation is strictly LIFO, and can be
modeled as a stack implemented as a massive
shift register. Unlike heap allocation, this sort
of memory management can be done quite effi-
ciently in hardware.

• Bounded heap usage enforced by linear capabil-
ity types in the same vein as LFPL. Existing work
[TEX03] shows how to construct a two stage type
system for such types.

On a more practical level, runtime placement and rout-
ing is a major barrier to Meta-HDL and all other run-
time synthesis systems. Current work in the area
of hardware-assisted fast routing [DHW02] [HWD03]
looks promising. Since place and route algorithms are
extremely complex, we intend to investigate whether
or not using a language with formal semantics such
as Meta-HDL could simplify the development of such
a router, effectively using Meta-HDL to bootstrap its
own synthesis toolchain.

7 Acknowledgements

Walid Taha provided the text for section 3 and pro-
posed the idea of using an FFT as an example. He also
came up with the name “Meta-HDL”. I am extremely
grateful for his guidance and feedback on this paper, as
well as his foundational work in multi-stage program-
ming, as cited above.

I would also like to thank Rick Kawin, Deborah Nolan,
and the Statistical Computing Facility for the use of
their computing hardware for our simulations.

1. Mycroft and Sharp allude to this possibility in [MS01];
Meta-HDL adds cross-stage persistence and a formal type
system for this purpose and validates the feasibility of the
technique

6

let omega j n = let z = 2. *. pi *. ((float j) /. (float n)) in (cos z , sin z)

let rec upto = function 0 → [] | n → (n−1)::upto (n−1)

let rec memoize n f k =
if n < 0
then k f
else 〈 let z = ∼(f n) in ∼ (memoize (n−1) (fun i → if i=n then 〈z〉 else f i) k) 〉

let rec fft radix length inputs k =

let rec butterfly length inputs k slice =
let rec continuation memoized inputs =

butterfly length
(fun i → if i?radix/length == slice

then (memoized inputs (i mod length/radix))
else inputs i)

k (slice−1)
and memoized continuation inputs = memoize (length/radix−1) inputs continuation
in if (slice < 0)

then k inputs
else if (length/radix < radix)

then memoized continuation inputs
else butterfly (length/radix)

(fun i → inputs (i + length ? slice / radix))
(fun inputs → memoized continuation (merge (length/radix) inputs))
(radix−1)

and merge length inputs i =
fold (+. . .) (map

(fun slice →
(inputs (slice ? (length/radix) + (i mod (length/radix))))

*. . .
((omega (slice ? (i mod (length/radix))) length)

*. .
(omega (radix ? slice ? i / length) radix)))

(upto radix))

in butterfly length inputs (fun inputs’ → k (merge length inputs’))

Figure 9: Meta-HDL code implementing a Variable-Radix Fast Fourier Transform

Figure 10: A circuit generated by the above code with radix=2

7

References

[Ana] C. Scott Ananian. Turning java into hard-
ware: Caffinated compiler construction.

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran,
and Satnam Singh. Lava: Hardware de-
sign in haskell. In International Conference
on Functional Programming, pages 174–184,
1998.

[BH98] Peter Bellows and Brad Hutchings. JHDL
- an HDL for reconfigurable systems. In
Kenneth L. Pocek and Jeffrey Arnold, edi-
tors, IEEE Symposium on FPGAs for Custom
Computing Machines, pages 175–184, Los
Alamitos, CA, 1998. IEEE Computer Soci-
ety Press.

[CTHL03] Cristiano Calcagno, Walid Taha, Liwen
Huang, and Xavier Leroy. Implementing
multi-stage languages using asts, gensym,
and reflection. In Krzysztof Czarnecki,
Frank Pfenning, and Yannis Smaragdakis,
editors, Generative Programming and Com-
ponent Engineering (GPCE), Lecture Notes
in Computer Science. Springer-Verlag,
2003.

[DHW02] Andre DeHon, Randy Huang, and John
Wawrzynek. Hardware-assisted fast rout-
ing. 2002.

[GL95] Shaori Guo and Wayne Luk. Compiling
Ruby into FPGAs. In Will Moore and
Wayne Luk, editors, Field-Programmable
Logic and Applications, pages 188–197.
Springer-Verlag, Berlin, / 1995.

[GNVV04] Zhi Guo, Walid Najjar, Frank Vahid, and
Kees Vissers. A quantitative analysis of the
speedup factors of FPGAs over processors.
2004.

[HWD03] Randy Huang, John Wawrzynek, , and An-
dre DeHon. Stochastic, spatial routing for
hypergraphs, trees, and meshes. 2003.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Pe-
ter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

[LL95] Y. Li and M. Leeser. Hml: An innova-
tive hardware description language and its
translation to vhdl, 1995.

[LLC99] John Launchbury, Jeffrey R. Lewis, and By-
ron Cook. On embedding a microarchi-
tectural design language within Haskell.
In Proceedings of the ACM SIGPLAN in-
ternational conference on functional program-
ming (ICFP ’99), Paris, France, September 27–
29, 1999, volume 34(9), pages 60–69, New
York, NY, USA, 1999. ACM Press.

[LLC+01] P. Leong, M. Leong, O. Cheung, T. Tung,
C. Kwok, M. Wong, and K. Lee. Pilchard -
a reconfigurable computing platform with
memory slot interface, 2001.

[LMS86] R. Lipsett, E. Marschner, and M. Shaded.
Vhdl - the language. ieee design and test
of computers. 1986.

[MS98] N. McKay and S. Singh. Dynamic special-
isation of XC6200 FPGAs by partial eval-
uation. Lecture Notes in Computer Science,
1482:298, 1998.

[MS01] Alan Mycroft and Richard Sharp. Hard-
ware synthesis using SAFL and applica-
tion to processor design. Lecture Notes in
Computer Science, 2144:13+, 2001.

[NN92] Flemming Nielson and Hanne Riis Niel-
son. Two-Level Functional Languages. Num-
ber 34. Cambridge, 1992.

[PP03] Christian Plessl and Marco Platzner. Tkdm
- a reconfigurable co-processor in a pc’s
memory slot. In IEEE ICFPT, 2003.

[SM01a] Richard Sharp and Alan Mycroft. A
higher-level language for hardware syn-
thesis. Lecture Notes in Computer Science,
2144:228, 2001.

[SM01b] Kong Woei Susanto and Thomas F. Mel-
ham. Formally analyzed dynamic synthe-
sis of hardware. The Journal of Supercomput-
ing, 19(1):7–22, 2001.

[Sod98] Donald Soderman. Implementing c de-
signs in hardware. 1998.

[Tah99] Walid Taha. Multi-Stage Programming:
Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and
Technology, 1999. Available from author’s
web-site.

[TEX03] Walid Taha, Stephan Ellner, and Hongwei
Xi. Generating heap-bounded programs in
a functional setting. In EMSOFT, 2003.

[TM95] Donald Thomas and Philip Moorby. 1995.

[TN03] Walid Taha and Michael Florentin Nielsen.
Environment classifiers. In POPL, 2003.

[TS97] W. Taha and T. Sheard. Multi-stage pro-
gramming with explicit annotations. In
Partial Evaluation and Semantics-Based Pro-
gram Manipulation, Amsterdam, The Nether-
lands, June 1997, pages 203–217. New York:
ACM, 1997.

8

