
A Coinductive Monad for Prop-bounded
Recursion

Adam Megacz
megacz@cs.berkeley.edu

PLPV’07
October 5th, 2007
Freiburg, Germany



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to

I Represent potentially-nonterminating computations in a
manner which retains advantages above.

I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality

I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to

I Represent potentially-nonterminating computations in a
manner which retains advantages above.

I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions

I can extract efficient implementations of such functions

I Goals: we would like to

I Represent potentially-nonterminating computations in a
manner which retains advantages above.

I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to

I Represent potentially-nonterminating computations in a
manner which retains advantages above.

I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to

I Represent potentially-nonterminating computations in a
manner which retains advantages above.

I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.

I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.

I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop

I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)

I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Entire Talk In One Slide

I Coq’s type theory can directly represent side-effect free,
obviously-terminating functions

I using built-in abstraction, reduction, equality
I can prove properties of such functions
I can extract efficient implementations of such functions

I Goals: we would like to
I Represent potentially-nonterminating computations in a

manner which retains advantages above.
I Allow optional termination proofs, which should:

I convert computations to functions.
I be in Prop
I be conventional (follow prose arguments)
I not require advance planning; “after the fact”

I This talk: a coinductive type whose constructors are the
operators of a monad.

I Achieves goals above, except: sacrifices reduction and equality.



Running Example: McCarthy’s Function

Actual behavior:

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Running Example: McCarthy’s Function

Actual behavior:

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



First Attempt: Direct Representation

Fixpoint mccarthy (n:nat) {struct n} : nat :=
match le_gt_dec n 100 with
| left _ => mccarthy (mccarthy (11+n))
| right _ => n-10

end.

I problem: 11+n is not structurally smaller than n

I problem: mccarthy (11+n) is not structurally smaller than n

I problem: any decreasing metric will more complex than the
function itself

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



First Attempt: Direct Representation

Fixpoint mccarthy (n:nat) {struct n} : nat :=
match le_gt_dec n 100 with
| left _ => mccarthy (mccarthy (11+n))
| right _ => n-10

end.

I problem: 11+n is not structurally smaller than n

I problem: mccarthy (11+n) is not structurally smaller than n

I problem: any decreasing metric will more complex than the
function itself

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



First Attempt: Direct Representation

Fixpoint mccarthy (n:nat) {struct n} : nat :=
match le_gt_dec n 100 with
| left _ => mccarthy (mccarthy (11+n))
| right _ => n-10

end.

I problem: 11+n is not structurally smaller than n

I problem: mccarthy (11+n) is not structurally smaller than n

I problem: any decreasing metric will more complex than the
function itself

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



First Attempt: Direct Representation

Fixpoint mccarthy (n:nat) {struct n} : nat :=
match le_gt_dec n 100 with
| left _ => mccarthy (mccarthy (11+n))
| right _ => n-10

end.

I problem: 11+n is not structurally smaller than n

I problem: mccarthy (11+n) is not structurally smaller than n

I problem: any decreasing metric will more complex than the
function itself

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Solution #1: Set-bounded recursion

Notation "a =<< b" :=
(match b with None => None | Some x => a x end)
(at level 100).

Fixpoint mccarthy (

d

n:nat) {struct n} :

option

nat :=

match d with
| 0 => None
| (S d’) =>

match le_gt_dec n 100 with
| left _ => mccarthy

d’ =<<

(mccarthy

d’

(11+n))
| right _ =>

Some

(n-10)
end.

end.

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Solution #1: Set-bounded recursion

Notation "a =<< b" :=
(match b with None => None | Some x => a x end)
(at level 100).

Fixpoint mccarthy (d n:nat) {struct d} : option nat :=
match d with
| 0 => None
| (S d’) =>
match le_gt_dec n 100 with
| left _ => mccarthy d’ =<< (mccarthy d’ (11+n))
| right _ => Some (n-10)

end end.

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Typical Solution: Set-bounded evaluation

I good: determination of recursion bound is separated from
function definition

I bad: recursion bound is in Set; will be included in extracted
code

Later we modified the whole formalization and we used the
Prop-sorted accessibility. Our tests showed a 25% to 30%
decrease in both time and memory usage of the extracted
algorithms. – Niqui and Bertot (2003)



Typical Solution: Set-bounded evaluation

I good: determination of recursion bound is separated from
function definition

I bad: recursion bound is in Set; will be included in extracted
code

Later we modified the whole formalization and we used the
Prop-sorted accessibility. Our tests showed a 25% to 30%
decrease in both time and memory usage of the extracted
algorithms. – Niqui and Bertot (2003)



Typical Solution: Set-bounded evaluation

I good: determination of recursion bound is separated from
function definition

I bad: recursion bound is in Set; will be included in extracted
code

Later we modified the whole formalization and we used the
Prop-sorted accessibility. Our tests showed a 25% to 30%
decrease in both time and memory usage of the extracted
algorithms. – Niqui and Bertot (2003)



Other Approaches

I Domain predicate
I multi-constructor type (in Set) [Bove, Capretta 2001]
I often with Dybjer’s simultaneous inductive-recursive definitions

I Accessibility predicate
I single-constructor predicate (in Prop) [Coq.Init.Wf]

I Extensions to the type theory (Y, bar types, etc)



Proposed Solution: A Coinductive Computation Monad

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Bind : (A->#A) -> #A -> #A
where "# A" := (Computation A).



Programming mccarthy Using the Monad

CoFixpoint mccarthy (n:nat) : #nat :=
match le_gt_dec n 100 with
| left _ => Bind mccarthy (mccarthy (11+n))
| right _ => Return (n-10)

end.

I Use of CoFixpoint circumvents usual syntactic check of
recursive references.

I Making monad operators constructors of the coinductive type
ensures generativity.



Termination Proofs

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

Note that facts about the return value (a) of one computation (c)
may be used in the termination argument for some other
computation (f a).



Termination Proofs

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

Note that facts about the return value (a) of one computation (c)
may be used in the termination argument for some other
computation (f a).



Termination Proofs

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

Note that facts about the return value (a) of one computation (c)
may be used in the termination argument for some other
computation (f a).



Termination Proofs

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

Note that facts about the return value (a) of one computation (c)
may be used in the termination argument for some other
computation (f a).



Termination Proofs

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

Note that facts about the return value (a) of one computation (c)
may be used in the termination argument for some other
computation (f a).



Termination Proofs

Inductive TerminatesWith : #A -> A -> Prop :=
| TerminateReturnWith :
forall (a:A),
TerminatesWith (Return a) a

| TerminateBindWith :
forall (a:A) (a’:A) (f:A->#A) (c:#A),
(TerminatesWith c a)
-> TerminatesWith (f a) a’
-> TerminatesWith (Bind f c) a’

Note that facts about the return value (a) of one computation (c)
may be used in the termination argument for some other
computation (f a).



Base Case: M(101) terminates

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



First Induction: 90 ≤ n ≤ 100⇒ M(n) = M(n + 1)

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Second Induction: 90 ≤ n ≤ 100⇒ M(n) = 91

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Third Induction: each “block of eleven” same

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Third Induction: each “block of eleven” same

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Third Induction: each “block of eleven” same

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Third Induction: each “block of eleven” same

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Therefore M(n) terminates for n ≤ 100

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Termination for n > 100 is immediate

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Summary of Termination Argument for mccarthy

I We can show by downward induction that for 90 ≤ n ≤ 100,
M(n) = M(n + 1) (taking M(100) = M(101) as the base
case).

I By a second induction we can show that M(n) = 91 over this
range.

I By a third downward induction we can show that M(n) = 91
holds for each chunk of eleven integers less than 100, using
the initial chunk 90 ≤ n ≤ 100 as the base case.

I Therefore the function terminates for n ≤ 100.

I Termination for n > 100 is immediate from the definition of
the function.

Unlike metric-based techniques, the proof of termination using a
coinductive monad can follow the conventional prose argument.



Summary of Termination Argument for mccarthy

I We can show by downward induction that for 90 ≤ n ≤ 100,
M(n) = M(n + 1) (taking M(100) = M(101) as the base
case).

I By a second induction we can show that M(n) = 91 over this
range.

I By a third downward induction we can show that M(n) = 91
holds for each chunk of eleven integers less than 100, using
the initial chunk 90 ≤ n ≤ 100 as the base case.

I Therefore the function terminates for n ≤ 100.

I Termination for n > 100 is immediate from the definition of
the function.

Unlike metric-based techniques, the proof of termination using a
coinductive monad can follow the conventional prose argument.



Proving forall n, Terminates (mccarthy n)

We can show by downward induction that for 90 ≤ n ≤ 100,
M(n) = M(n + 1) (taking M(100) = M(101) as the base case).

Lemma mccarthy_is_m_of_n_plus_1_for_90_n_100 :
forall n k:nat,
90 <= n <= 100
-> TerminatesWith (mccarthy (n+1)) k
-> TerminatesWith (mccarthy (n )) k.

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Proving forall n, Terminates (mccarthy n)

By a second induction we can show that M(n) = 91 over this
range.

Lemma mccarthy_n_is_91_for_90_n_100 :
forall n:nat,
90 <= n <= 100
-> TerminatesWith (mccarthy n) 91.

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Proving forall n, Terminates (mccarthy n)

By a third downward induction we can show that M(n) = 91 holds
for each chunk of eleven integers less than 100, using the initial
chunk 90 ≤ n ≤ 100 as the base case.

Lemma mccarthy_n_is_91_for_blocks_of_11 :
forall k:nat,
100 > k*11
-> forall n:nat,
90-k*11 <= n <= 100-k*11
-> TerminatesWith (mccarthy n) 91.

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Proving forall n, Terminates (mccarthy n)

Therefore the function terminates for n ≤ 100.

Lemma mccarthy_terminates_for_n_le_100 :
forall n:nat,

n <= 100
-> TerminatesWith (mccarthy n) 91.

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Proving forall n, Terminates (mccarthy n)

Termination for n > 100 is immediate from the definition of the
function.

Lemma mccarthy_terminates_for_n_gt_100 :
forall n:nat,

n > 100
-> Terminates (mccarthy n).

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Proving forall n, Terminates (mccarthy n)

Therefore, mccarthy is total.

Theorem mccarthy_terminates :
forall n:nat,

-> Terminates (mccarthy n).

M(n) =

{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100



Evaluation and Extraction

eval : forall (A:Set) (c:#A) (t:Terminates c), A

Functions produced by eval yield efficient extractions; the
Terminates term (Prop bound) is completely omitted.

bounded_eval :
forall (A:Set) (c:#A) (n:nat), option A



Summary So Far

I We can represent potentially-nonterminating computations
I We can write proofs about the properties (such as

termination) of such computations,
I Proofs can be used to convert a computation to a function

(via eval)
I Proofs are in Prop
I Proofs are conventional (follow prose)
I Proofs are “after the fact”

I Coq’s extraction mechanism produces efficient code for
applications of eval.



Prior work: [Capretta 2005]

Different encoding of computations as coinductive values; closer
connection to operational semantics:

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Step : #A -> #A
where "# A" := (Computation A).

CoFixpoint bind (A B:Set)(f:A->#B)(x:#A) : #B :=
match x with
| Return a => f a
| Step x’ => Step (bind A B f x’)

end.



Prior work: [Capretta 2005]

Different encoding of computations as coinductive values; closer
connection to operational semantics:

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Step : #A -> #A
where "# A" := (Computation A).

I Disadvantage: bind is no longer a constructor, so programs
with nested recursion fail the generativity requirement.



Prior work: [Capretta 2005]

Different encoding of computations as coinductive values; closer
connection to operational semantics:

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Step : #A -> #A
where "# A" := (Computation A).

I Disadvantage: bind is no longer a constructor, so programs
with nested recursion fail the generativity requirement.



Generalizing to Different Range/Domain

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Bind :

forall (B:Set),

(A->#A) -> #A -> #A.
where "# A" := (Computation A).

I Proof of eval safety requires JMeq axiom [McB00] in this case



Generalizing to Different Range/Domain

CoInductive Computation (A:Set) : Type :=
| Return : A -> #A
| Bind : forall (B:Set), (B->#A) -> #B -> #A.
where "# A" := (Computation A).

I Proof of eval safety requires JMeq axiom [McB00] in this case



Mutual Recursion

CoFixpoint isEven (isOdd:nat->#bool) (n:nat) : #bool :=

match n with

| 0 => Return true

| (S n’) => x <- isOdd n’;

Return (negb x)

end.

CoFixpoint isOdd (isEven:nat->#bool) (n:nat) : #bool :=

match n with

| 0 => Return false

| (S n’) => x <- isEven n’;

Return (negb x)

end.

CoFixpoint isEven’ := (kludge isEven) isOdd’

with isOdd’ := (kludge isOdd) isEven’

with kludge := (fun x=>x).



Higher-Order Computations

CoFixpoint foldc
(A B:Set)(la:list A)(b:B)(f:A->B->(#B)) : #B :=

match la with
| nil => Return b
| (cons a la’) => b’ <- f a b

; foldc A B la’ b’ f
end.



First-Class Termination Proofs

Lemma foldc_termination :
forall
(A B:Set)
(la:list A)
(b0:B)
(f:A->B->#B),

(forall (a:A)(b:B),
(In a la) ->
(Terminates (f a b)))

-> Terminates (foldc la b0 f).



Thank you


