Hardware Design with Generalized Arrows

Adam Megacz
megacz@cs.berkeley.edu

Computer Science Division, UC Berkeley

Abstract. Instances of the GArrow type class (Figure 2) are called gen-
eralized arrows. The GArrow class generalizes Control.Arrow by allowing
any type-level monoid to take the place of the cartesian product (,) and
by replacing arr with the “structural” functions usually defined in terms
of it.

Multi-level terms with environment classifier types [TN03] may be flat-
tened into single-level terms parameterized by an instance of the GArrow
class. Multi-level terms and environment classifier types play the same
role for generalized arrows that Paterson notation [Pat01] and its typing
rules [PPJ] play for Control.Arrow.

This paper presents the first nontrivial application of generalized arrows.
Previously, GHC had been extended! with environment classifiers and an
additional compiler pass which implements the flattening transformation
[Megl1]. In the present work this facility has been augmented to allow
for programs in which level-0 terms consist of unrestricted Haskell, while
level-1 terms are limited to a small k-calculus [Has95] based language.
The flattened, GArrow-parameterized term is then instantiated with the
instance GArrowVerilog, which renders the term as a Verilog program,
which is then synthesized and run on an FPGA.

The sample application presented here is a bit-serial circuit which searches
for SHA-256 hash collisions. The circuit has been synthesized on a Xilinx
Spartan-6 FPGA and functions correctly.

1 Introduction

1.1 Related Work

Many researchers have investigated the use of functional programming lan-
guages to describe hardware circuits [ACS05] [GMJO05] [JO’95] [LLIV00] [MCL98|
[PKIO08] [SMO01] [SR95] [BCSS98] [GMJ05] [MCL98] [SM01] [SR95]. The allure

is strong: combinational circuits and pure functions have much in common.

These efforts generally fall into two categories:

! http://www.cs.berkeley.edu/~megacz/garrows/

— In one approach, the Haskell program is the circuit; this is also called a
“shallow embedding”. This was the approach used in the first version of the
original Lava [BCSS98]. This approach is very pleasant for users, since they
simply reuse the binding, application, and abstraction mechanisms they are
accustomed to from Haskell. However, in order to extract a graph from the
Haskell program some sort of mechanism for observing sharing [CS99,Gil09]
is required. There are several approaches to observing sharing in a one-level
language, but generally they require either restricting the algebra of valid
program transformations or else accepting some degree of nondeterminism or
lack of precise semantics for the observation process.

— In the other approach, the Haskell program builds the circuit; this is also
called a “deep embedding”. This was used in the second version of the original
Lava, which required that programs be written in value-recursive monadic
style [ELO00]. This avoids the pitfalls of observable sharing but requires that
circuits be constructed using a totally different notation — for example, mdo
must be used instead of Haskell’s recursive let. .in.

The present paper experiments with a solution which does both of these at
the same time: the program both is the circuit and builds the circuit, yet is
not affected by the issues that arise from letting a program observe its own
sharing structure. This is accomplished through the use of a two-level language
which enforces stratification of the levels in the type system. The language is an
extension of Haskell with code terms and code types with environment classifiers
[TNO03]. This extension supports heterogeneous metaprogramming, which is to
say that it does not assume that the type systems of the two levels are the same,
nor that one is a subset of the other. The level-1 language — which is meant to
represent circuits — is based on k-calculus, a first-order analogue of A-calculus.

2 k-calculus

A-calculus allows functions of higher type; that is, terms of type (1 — 7) — 7.
When the need arises to restrict the use of such functions, the most straightforward
approach is to enforce the separation syntactically in the grammar of the types:

o ::= bool | int | ... (ground types)
Tu=o0|lo—T (first-order types)

Although effective, this approach does not scale well. Consider adding polymor-
phism: two syntactical categories of type variables are required (one for ground
types and one for first-order types). This in turn requires two syntactic quan-
tifier forms, and subsequently two different kinds for polymorphic terms; the
duplication of effort grows rapidly.

Hasegawa’s k-calculus [Has95] provides a more manageable approach, motivated
as a syntax for morphisms in a contextually-closed category; each expression of

k-calculus inhabits a hom-set of the category. The following grammar is taken
from [Has95, Section 3].

Tu=1]7@7|... (types)
Ir:=. |xor~r7T (contexts)
e =z | lifta(e) | kel ~Ae |idy | ece (expressions)
Ju=TFe:iT~T (judgments)

Note that each variable in the context is assigned a pair of types, as is the
expression in the succedent of a judgment. In the “first order A-calculus” above,
a function taking two arguments of types A and B and yielding a result of type
C has the type A — (B — (), whereas in k-calculus it has the pair of types
A®B ~ C. The key difference to note here is the use of two distinct operators
(® and ~-) rather than one (—).

Also of note is the form of the type annotation on k-abstraction: one may only
abstract over terms whose type is of the form 1 ~» 7. This is how the “first
order” nature of x-calculus is enforced. If polymorphism is added, restrictions
are enforced at the site of use rather than the site of binding.

In Hasegawa’s presentation the underlying category’s monoidal structure is
assumed to be strict; as a consequence, the following type equalities hold in that
presentation:

ler=1=7®1
TR (2®T73) =(T1 ®@T2) ® T3

In this presentation the equalities above are assumed only to be isomorphisms
and will be invoked explicitly.

Note that there is no syntax for application, only for composition and “lift”. The
typing rules for these are given below:

—1
}—ldT:TWTd CEZTWTll_LUZTWTlvar

I'Fe:l~71
T lift(e) : 7/~ 71’

Lift

I'Feyim ~ 1 I'Feg:img ~> T3

Comp
I'Feyoey:11 ~ T3

Iz:l~mkFery~T13

Kappa
I'Frrl~~T7 . :TIQT ~ T3

Although this form most closely matches the category-theoretic foundations, it is
more convenient to write programs using application, which may be defined as:

e1€e2 d;f e1 0 |ift(€2)

The typing rule for this abbreviation is derivable:

I'Fey:1l~mn
I'Flift,(e2) : 1 @1 ~ T1QT
I'kFel:T1Qm ~ T3 I'Flift,,(e2) : T2 ~ QT

Lift

Com
'k ejolift,,(e2) : 0~ 73 P

So we have:

I'Fel:m®m ~ T I'Fey:1l~T
1:T1QT2 3 2 1KappaApp

I'Fejeg i~ 73

In practical use, the part of a type to the left of the ~» can be thought of as a
list of arguments, represented as a “right imbalanced” tree terminated by 1. For
example, a function taking exactly three arguments of types A, B, and C and
returning a result of type D would have the type

AR(B®(C®1)) ~ D

We will adopt the convention that ® is right associative, and elide the parentheses:

ARBRCR1 ~~ D

The 1 is still necessary as an indication that C' is the third and final argument
rather than a list of all but the first two arguments; this is similar to how the
Haskell patterns a:b:c: [] and a:b:c give the identifier ¢ different types. This
distinction is important, since it shows how k-calculus types AQ BQC ~~ D differ
from Haskell’s “uncurried” function types (A,B,C)->D. In k-calculus a function
may be applied without knowing its arity — just as with curried functions in A-
calculus but without the use of higher types. For example, the following judgment
is derivable for any «, and therefore for f a function of any arity.

fiA®a~ Be: 1~ Ak fe:a~ B

We extend the k-calculus with an additional expression form letrec not found in
Hasegawa’s work:

Irl~Abe,:1~ A
Iz:l~AkFke:B~C

I'letrecx=e,ine: B~ C

LetRec

3 A Two-Level A-k-calculus

We now proceed to embed k-calculus within Haskell. First, the expressions
of Haskell are extended with the usual “bracket” and “escape” operators of
multi-level languages [NN92]:

e == ... | {e1) (level-0 expressions)
e1 n=kx:l~T.e1 | x| eje; | ~~eg (level-1 expressions)

The grammar for types is extended with a code type, indexed by an environment
classifier [TNO03] (which is a type variable) and a pair of types:

T = ... | (T~ 7)Q« (types)

Although A-application and k-application are completely distinct nodes in the
parsed abstract syntax tree, it is cumbersome to have to use an actual operator —
rather than simple juxtaposition — for the latter. Therefore the parser measures the
number of code brackets enclosing a subexpression, subtracts from it the number
of escapes, and if the result is nonzero it treats occurrences of juxtaposition as k-
application. The syntax for A-abstraction is overloaded similarly for xk-abstraction.

Here is a simple example program showing x-application inside brackets:

applyBrak :: <[(a,b) ~~> c]>ed ->
<[O ~~>al>ed —>
<[b ~~> c]>ed

applyBrak x y = <[~~x ~~y 1>

To illustrate k-abstraction, here is an example functional which reverses the order
of the first two arguments of a function. Notice that this works for functions of
any arity greater than one:

swap :: <[(a,(b,c)) ~~> d]>Ce —>
<[(b,(a,c)) ~~>d I>Ce
swap f = <[\xy -> ~~f y x 1>

The feature which distinguishes k-abstraction from A-abstraction is the inability
to abstract over functions. For example, consider an attempt to write the Haskell
apply function inside the brackets:

bad = <[\f x -> f x 1>

This program is rejected by the typechecker:

Demo.hs:12:22:
Couldn’t match expected type ‘(t0, t1)’
with actual type ()’
Expected type: (t0, t1)~~>t3
Actual type: () ~~>t2
In the expression: f x
In the expression: \ x -> f x

Since f is brought into scope by a k-abstraction, the typechecker concludes from
rule [Kappa] that £ has type () ~~>t for some type t. When it encounters the
application f x it uses rule [KappaApp], attempting to unify () ~~>t with (a,b)~
~>c; this unification fails.

4 Generalized Arrows

sample2 =
ga_uncancelr >>>
ga_first ga_copy >>>
ga_swap >> A\ T
ga_second (ga_first ga_drop >>>

ga_cancell) >>>
ga_cancell

Fig. 1. A sample GArrow term and its visualization as a Penrose diagram.

Once a level-1 k-calculus term has been produced, it is necessary to compile
it. The multi-level terms introduced in the previous section are not executed
directly; the back end of the compiler has not been extended to produce code
for them. Instead, these terms are flattened into ordinary Haskell terms in which
terms parameterized by an instance of the GArrow class take the place of level-1
terms. The definition of the GArrow class is shown in Figure 2.

As partial justification for the name generalized arrow, Figure 3 shows an instance
declaration making any Control.Arrow (including (->)) a GArrow.

It will be convenient to visualize GArrow terms as Penrose diagrams [Sel09]. In
fact, the GArrow instance GArrowTikZ does exactly this, emitting TikZ code to
produce the diagram. For example, the following term:

samplel = Fes
ga_copy >>> CoPy swap drop cancell
ga_swap >>>

ga_first ga_drop >>>
ga_cancell

A larger example can be found in Figure 1.

class Category g =>

--id

-—(>>>)
ga_first
ga_second
ga_cancell
ga_cancelr

ga_uncancell ::
ga_uncancelr ::

ga_assoc
ga_unassoc

class GArrow
ga_copy

class GArrow
ga_drop

class GArrow
ga_swap

class GArrow
ga_loopr
ga_loopl

Fig. 2. The definition for the GArrow type class and its four most frequently implemented
subclasses. The class Category comes from the standard Control.Category module.

03 03 08 09 03 09 03 0’ 09 0%

g (kx)
it g
g (kx)
it g

g (kx)
it g

g (kx)

GArrow g (**) u where

X X
Xy ->gyz->gxz
Xy—>g(x**z)(y**z)
Xy -—>g (z **x x) (z *x* y)
(ux*x) X

(x**u) X

X (u**x)

X (x**u)
((xxx y)xxz) (xxx(y **z2))
(xxx(y *xz)) ((x*x y)xxz)

u => GArrowCopy g (**) u where
X (x**x)

u => GArrowDrop g (**) u where
X u

u => GArrowSwap g (**) u where
(xx*y) (y**x)

u => GArrowLoop g (**) u where

irog (xxxz) (y**z) > gxy
1iog (zx*x) (zx*y) > gxy

5 Flattening

Having described the modifications to the syntax and type system, we now show
a few examples of the flattening procedure (see [Megl1] for complete details on

the algorithm).

Here is a simple example of a flattened term; the arguments const and times

are “black boxes”:

demo const times
<[\y -> ~~times y ~~(const 12) 1>

uncancelr second times

const 12

instance Arrow a => GArrow a (,) () where

ga_first = first

ga_second = second

ga_cancell = arr (\(Q,x) -> x)
ga_cancelr = arr (\(x,0) -> x)
ga_uncancell = arr (\x -> ((),x))
ga_uncancelr = arr (\x -> (x,()))

ga_assoc = arr (\((x,y),2z) -> (x,(y,2)))
ga_unassoc = arr (\(x,(y,z)) -> ((x,y),2))

instance Arrow a => GArrowDrop a (,) () where
ga_drop = arr (\x -> ()

instance Arrow a => GArrowCopy a (,) () where
ga_copy = arr (\x -> (x,%))

instance Arrow a => GArrowSwap a (,) () where
ga_swap arr (\(x,y) -> (y,x))

instance ArrowLoop a => GArrowLoop a (,) () where
ga_loopr = loop
ga_loopl f = 1loop (ga_swap >>> f >>> ga_swap)

Fig. 3. Instance declaration showing that every Control.Arrow is a generalized arrow.

When an identifier appears more than once, the structural rule of contraction
will appear in the term’s proof tree. This is realized by the ga_copy method as
shown in the following example:

demo const times =
<[\y -> ~~times y y 1>

copy times

{7

Finally, it is important to note that recursion outside the code brackets represents
repetitive structures, whereas recursion inside the brackets represents feedback
loops. This is illustrated by the following two examples; the first shows recursion
inside the brackets, which produces feedback:

demo const times =
<[\x ->
let out = ~~times (~~times ~~(const 2) out) x
in out

1>

loopl

copy times

uncancell times

const 2

swap

The following example demonstrates recursion outside the brackets, which pro-
duces repetitive structures:

-- ‘‘pow n x’’ computes x"n

pow O x = const (1::Int)
pow 1 x = const x
pow n x = <[~~times

~~(pow 1 x)
~~(pow (n-1) x) 1>

demo const times =
<[\y => ~~(pow 9 12) 1>

This distinction between recursion inside the brackets and recursion outside
the brackets is closely related to monadic value recursion [EL00]. In fact, a
term which uses recursion (LetRec) inside the brackets will be flattened to a
GArrow term which relies on ga_loop. This term may then be instantiated for
any MonadFix, since Control.Arrow.Kleisli provides a ArrowLoop instance for
any MonadFix, and Figure 3 provides a GArrowLoop instance for any ArrowLoop;

when instantiated in this manner, ga_loop will be realized as mfix. By contrast,
recursion outside the brackets will not be altered by the flattener aside from an
adjustment to its type.

a b c d +7 e f g h
M@J [} N@J ¥
ror :| ror ;. ror nad ror : ror : ror :
2 113 i 2 J 6 I 11 25 o
® ®
+ + + + + +
Padded MI .
Expanded) agle
Constants
Message

Fig.4. The SHA-256 Algorithm. Each solid rectangle is a 32-bit state variable; the
path into each rectangle computes its value in the next round based on the values of
the state variables in the previous round. The standard specifies initialization values
for the state variables prior to the first message block. The ® symbol is bitwise xor, the
+ symbol is addition modulo 232, ror is bitwise right rotation, maj is bitwise majority,
and mux is bitwise mux (e[i1?£[i]l:g[il). For each block of the message the algorithm
above is iterated for 64 rounds; the values in the eight state registers afterwards are
added to the values they held before the block before starting the next block. The hash
of a message consists of the concatenation of the values in the eight state variables after
the last block has been processed.

6 Specifying Hardware

6.1 Primitives

The SHA-256 engine is defined in terms of the primitives shown in Figure 5,
which appear as opaque elements in Haskell. Each of the primitives was manually
implemented in Verilog; Haskell is essentially used as a language for connecting
them.

The first two primitives provide a constant logic zero and one. The next six
primitives are basic combinational logic elements, and the seventh element is a
simple register (the design assumes only a single global clock).

The loop element outputs a repeating sequence of bits (which is fixed at design
time). The fifo element is a simple one-bit first-in-first-out queue.

The oracle is much like loop, except that the value being repeated can be
modified remotely from outside the FPGA using the device’s JTAG connection.
This same JTAG connection can be used to query the value of any probe. Each
takes an Int argument which is used as an “address” to identify the probe or
oracle within the running design.

class BitSerialHardwarePrimitives g where

type Wire

high 0 <[O ~~> Wire]>Qg
low i <[O ~~> Wire]>0g
not 1 <[Wire,() ~~> Wire]>@g
xor <[Wire, (Wire, ()) ~~> Wire]1>Qg
or <[Wire, (Wire, ()) ~~> Wire]>Q@g
and 1 <[Wire, (Wire, ()) ~~> Wire]>Qg
mux2 11 <[Wire, (Wire, (Wire, (D)) ~~> Wire]>0g
maj3 10 <[Wire, (Wire, (Wire, ())) ~~> Wire]>Qg
reg 1 <[Wire,() ~~> Wire]>@g
loop e [Bool]l -> <[() ~~> Wire]>Gg
fifo : Int -> <[Wire,() ~~> Wire]>@g
probe :: Int -> <[Wire,() ~~> Wire]>Qg
oracle :: Int -> <[() ~~> Wire]>0g

Fig. 5. Type class containing the primitives needed for the SHA-256 circuit

There are a few basic subcircuits to build before assembling the SHA-256 hashing
engine. First, we define a three-input xor gate in the obvious manner:

xor3 = <[\x y z -> xor (xor x y) z]>

Using this, we are now able to write code for a bit-serial adder. The firstBit
produces a repeating pattern of 32 bits, the first of which is a one; this signal is
used to clear the internal carry-bit state (carry_out).

adder =
<[\inl in2 ->
let firstBit ~~(loop [i/=0 | i<-[0..31]1 1D
carry_out = reg (mux2 firstBit

zZero
carry_in)
carry_in = maj3 carry_out inl in2

in xor3 carry_out inl in2
1>

Finally, the circuit below performs a bitwise right-rotation. Since the circuit is
bit-serial, it has a latency of 32 bits.

rotRight n =
<[\input ->
let sel = ~~(loop [i >= 32-n | i<-[0..31] 1)
fifol = ~~(fifo (32-n)) input
fifo2 = ~~(fifo 32) fifol
in mux2 sel fifol fifo2

1>
sha256round =
<[\load input k_plus_w ->
let a = ~~(fifo 32) (mux2 load a_in input)

b = ~~(fifo 32) a

c = ~~(fifo 32) b

d = ~~(fifo 32) c

e = ~~(fifo 32) (mux2 load e_in d)

f = ~~(fifo 32) e

g = ~~(fifo 32) f

h = ~~(fifo 32) g

s0 = xor3
(~~(rotRight 2) a_in)
(~~(rotRight 13) a_in)
(~~(rotRight 22) a_in)

s1 = xor3
(~~(rotRight 6) e_in)
(~~(rotRight 11) e_in)
(~~(rotRight 25) e_in)

a_in = adder t1 t2

e_in = adder t1 d

t1 = adder
(adder h s1)
(adder (mux2 e g f)

k_plus_w)
t2 = adder sO (maj3 a b c)
in h
1>

Fig. 6. Core algorithm for one pass of SHA-256. The input k_plus_w is a wire input
carrying the sum of the SHA-256 constant table entry and (K) and the message being
hashed (W). The load input switches the circuit between computation mode and loading
mode; when in loading mode the eight state registers form one long shift register; a new
state can be shifted in via input and the old state shifted out via the circuit’s (sole)
output.

Using these subcircuits, it is now possible to express the SHA-256 algorithm,
which can be found in Figure 4.

Figure 6 shows the implementation of the core of the SHA-256 algorithm. The
circuit is initialized by holding load high for 8 x 32 cycles while shifting in the
initial hash state on the input wire. The 64 rounds of the SHA-256 algorithm
are then performed by holding load low and waiting for 64 x 32 clocks. Finally
the result is read out by holding load high and monitoring the circuit’s output
for the following 8 x 32 clocks.

Here is the type inferred by GHC for sha256round:
$ inplace/bin/ghc-stage2 SHA256.hs

TYPE SIGNATURES
sha2b56round ::
forall (t :: *x => % -> %) a.
(Num a, BitSerialHardwarePrimitives t) =>
(a > <[(Wire, ())~~>Wire]>@t)
-> <[(Wire, (Wire, (Wire, ())))~~>Wire]>0t

7 Implementation

One caveat should be noted: the Haskell code in the current implementation
emits not Verilog, but a graph in text form whose nodes are the primitives above.
This graph is then read in by a separate Java program, which emits the actual
Verilog and supervises the execution of the synthesis tools. In principle there is
no reason why the Java code could not be rewritten in Haskell (it was inherited
from an earlier project and works quite well).

The syntax leaves a bit to be desired. Although the mathematical notation assumes
right-associativity for ®, the Haskell parser interprets (x,y,z) as a triple (distinct
from a pair whose second coordinate is a pair). The low-precedence application
operator ($) is unavailable inside code brackets because it is an ordinary Haskell
function (not a language primitive) with a higher-order type. However, it is so
effective at eliminating parentheses that it might be worth including it in the
grammar.

8 Conclusion and Future Work

Generalized arrows make the structural laws (weakening, exchange, contraction,
and associativity) of a typing proof explicit in the resulting generalized arrow
term. Consequently, syntactical properties like variable order are retained and
may be exploited. In the context of hardware design, this may lead to a strategy
for conveniently specifying relative location (RLOC) constraints [Sinl1].

REFERENCES

[ACS05]

[BCSS98]

[CS99)]
[EL00]

[Gi109]

[GMJO05]

[Has95]

[J0°95]

[LLIVOO]

[MCLYS]
[Meg11]
[NN92|
[Pat01]
[PKI08]
[PPJ]
[Sel09]

[Sin1]

E Axelsson, K Claessen, and M Sheeran. Wired: Wire-aware circuit
design. LECTURE NOTES IN COMPUTER SCIENCE, Jan 2005.
P Bijesse, K Claessen, M Sheeran, and S Singh. Lava: hardware design
in haskell. Proceedings of the third ACM SIGPLAN international . ..,
Jan 1998.

Claessen and Sands. Observable sharing for functional circuit descrip-
tion. 1999.

Levent Erkok and John Launchbury. Recursive monadic bindings.
pages 174-185, 2000.

Andy Gill. Type-safe observable sharing in haskell. In Stephanie
Weirich, editor, Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell, Haskell 2009, Edinburgh, Scotland, UK, 3 September 2009,
pages 117-128. ACM, 2009.

J Grundy, T Melham, and JO’leary. A reflective functional language
for hardware design and theorem proving. Journal of Functional
Programming, Jan 2005.

M Hasegawa. Decomposing typed lambda calculus into a couple
of categorical programming languages. Lecture Notes in Computer
Science, 953, 1995.

JO’Donnell. From transistors to computer architecture: Teaching
functional circuit specification in hydra. Functional Programming
Languages in Education: First ..., Jan 1995.

Y Li, M Leeser, S Inc, and M View. Hml, a novel hardware description
language and its translation tovhdl. IEEE Transactions on Very Large
Scale Integration (VLSI) ..., Jan 2000.

J Matthews, B Cook, and J Launchbury. Microprocessor specification
in hawk. Computer Languages, Jan 1998.

Adam Megacz. Multi-level languages are generalized arrows. submitted,
preprint available on arziv.org, http://arxiv.org/abs/1007.2885, 2011.
F. Nielson and H. R. Neilson. Two-Level Functional Languages. Cam-
bridge University Press, Cambridge, Mass., 1992.

Ross Paterson. A new notation for arrows. In ICFP, pages 229-240,
2001.

S Park, J Kim, and H Im. Functional netlists. portal.acm.org, Jan
2008.

Ross Paterson and Simon Peyton Jones. Type and translation rules
for arrow notation in ghc.

Peter Selinger. A survey of graphical languages for monoidal categories,
August 23 2009.

Satnam Singh. The RLOC is dead - long live the RLOC. In
John Wawrzynek and Katherine Compton, editors, Proceedings of the
ACM/SIGDA 19th International Symposium on Field Programmable
Gate Arrays, FPGA 2011, Monterey, California, USA, February 27,
March 1, 2011, pages 185-188. ACM, 2011.

[SMO01] R Sharp and A Mycroft. A higher-level language for hardware synthesis.
LECTURE NOTES IN COMPUTER SCIENCE, Jan 2001.

[SR95] R Sharp and O Rasmussen. Using a language of functions and rela-
tions for vlsi specification. Proceedings of the seventh international
conference on ..., Jan 1995.

[TN03] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
pages 26-37, 2003.

