
A Library and Platform for
Bitstream Manipulation

Adam Megacz
UC Berkeley

megacz@cs.berkeley.edu

FCCM
23-Apr-2007

mailto:megacz@cs.berkeley.edu
mailto:megacz@cs.berkeley.edu

The Library and Platform

• Slipway
• Development board reference design
• ~USD$60 for pcb+parts
• Assemble by hand in ~30min

2

• Abits
• Java library for Atmel At94k FPGAs

• bitstream creation/modification
• on-line partial reconfiguration

• 100% open source (BSD license)

M:\proj\slipway\pcb\slipway.r5.pcb (Silkscreen, Top layer, Bottom layer)

Background

3

Background

• Microprocessors have publicly
documented instruction sets

3

Background

• Microprocessors have publicly
documented instruction sets
• Users expect and even assume this.

3

Background

• Microprocessors have publicly
documented instruction sets
• Users expect and even assume this.

• Until ~1997, FPGAs typically did as well

3

Background

• Microprocessors have publicly
documented instruction sets
• Users expect and even assume this.

• Until ~1997, FPGAs typically did as well

• Post-1997: manufacturers begin to treat
FPGA “instruction sets” as a trade secret

3

Background

• Microprocessors have publicly
documented instruction sets
• Users expect and even assume this.

• Until ~1997, FPGAs typically did as well

• Post-1997: manufacturers begin to treat
FPGA “instruction sets” as a trade secret
• Claim that users don’t mind this.

3

So What?

4

So What?

• Ability to treat code as data is one of
the most powerful aspects of the von
Neumann architecture.

4

So What?

• Ability to treat code as data is one of
the most powerful aspects of the von
Neumann architecture.
• Last 50 years: rich body of knowledge emerges for dealing

with code as data: compilers, program transformation,
linkers, loaders, garbage collectors, debuggers.

4

So What?

• Ability to treat code as data is one of
the most powerful aspects of the von
Neumann architecture.
• Last 50 years: rich body of knowledge emerges for dealing

with code as data: compilers, program transformation,
linkers, loaders, garbage collectors, debuggers.

• Last 7 years: Hotspot JVM takes runtime code generation
from “obscure research topic” to “standard feature”

4

So What?

• Ability to treat code as data is one of
the most powerful aspects of the von
Neumann architecture.
• Last 50 years: rich body of knowledge emerges for dealing

with code as data: compilers, program transformation,
linkers, loaders, garbage collectors, debuggers.

• Last 7 years: Hotspot JVM takes runtime code generation
from “obscure research topic” to “standard feature”
➡ Performance cost of dynamic language features drops.

4

So What?

• Ability to treat code as data is one of
the most powerful aspects of the von
Neumann architecture.
• Last 50 years: rich body of knowledge emerges for dealing

with code as data: compilers, program transformation,
linkers, loaders, garbage collectors, debuggers.

• Last 7 years: Hotspot JVM takes runtime code generation
from “obscure research topic” to “standard feature”
➡ Performance cost of dynamic language features drops.

➡ A whole generation of business software is written in
higher-level languages.

4

So What?

• Ability to treat code as data is one of
the most powerful aspects of the von
Neumann architecture.
• Last 50 years: rich body of knowledge emerges for dealing

with code as data: compilers, program transformation,
linkers, loaders, garbage collectors, debuggers.

• Last 7 years: Hotspot JVM takes runtime code generation
from “obscure research topic” to “standard feature”
➡ Performance cost of dynamic language features drops.

➡ A whole generation of business software is written in
higher-level languages.
➡ Programmer productivity rises.

4

So What?

5

So What?

• FCCMs/FPGAs are one of the leading
alternatives to the von Neumann
computation model

5

So What?

• FCCMs/FPGAs are one of the leading
alternatives to the von Neumann
computation model
• No inherent barrier to code-as-data paridigm.

5

So What?

• FCCMs/FPGAs are one of the leading
alternatives to the von Neumann
computation model
• No inherent barrier to code-as-data paridigm.

• However, practical barrier of bitstream secrecy.

5

So What?

• FCCMs/FPGAs are one of the leading
alternatives to the von Neumann
computation model
• No inherent barrier to code-as-data paridigm.

• However, practical barrier of bitstream secrecy.
• FPGA languages, compilers and tools have not evolved as

quickly as those for software.

5

So What?

• FCCMs/FPGAs are one of the leading
alternatives to the von Neumann
computation model
• No inherent barrier to code-as-data paridigm.

• However, practical barrier of bitstream secrecy.
• FPGA languages, compilers and tools have not evolved as

quickly as those for software.
• FPGA design productivity has not kept pace with software

design productivity growth.

5

So What?

• FCCMs/FPGAs are one of the leading
alternatives to the von Neumann
computation model
• No inherent barrier to code-as-data paridigm.

• However, practical barrier of bitstream secrecy.
• FPGA languages, compilers and tools have not evolved as

quickly as those for software.
• FPGA design productivity has not kept pace with software

design productivity growth.
• Coincidence?

5

Atmel At94k Background

• Positive
• Fine-grained, “sea of gates”

• Fast connections to eight nearest neighbors
• 10-wire routing channel for each row/column

• Partial reconfiguration on an extremely fine grain
• On-die AVR microcontroller (manages partial reconfig)

• Negative
• Manufactured on an old 0.35µm process
• Nominal clock rate is ~100Mhz
• Largest device is 2300 CLBs (CLB = FF+4LUT)

6

Abits

• Library for configuring Atmel At94k
FPGAs
• Written in Java
• Bitstream creation, modification, parsing
• On-line partial reconfiguration
• 100% open source, BSD license

7

Abits: API

• Same API for bitstreams and live devices
• bitfile on disk
• bitstream in memory
• running device accepting partial reconfiguration

commands

• Heap-efficient

• Very low-level

• 4 user-visible classes, ~55 methods

8

Abits: Example

9

Yi

L
0
..
L
4

Z W

T

C

FB

Xo

R

Yo

YLXL

Xi

L

Oe

01

1 0

void foo(Fpslic fpslic) {

 Cell cell =
 fpslic.getCell(10,10);

 // X-Lut computes constant 1
 cell.xlut(0xff);

 // Y-Lut computes (Xin & Yin)
 cell.yi(SOUTH);
 cell.ylut(LUT_SELF & LUT_OTHER);

 // write to device (or file)
 fpslic.flush();

}

Slipway

• Reference design for development board
• USD$60 for pcb+parts
• Assemble by hand in <30min (all through-hole)
• Board masks are BSD licensed

10

• USB interface
• Provides hard reset, configuration

and 1Mbit/sec serial communication
• Bus powered
• No creaky parallel ports
• No drivers!
• Host-side library is also BSD licensed

The Applications

• Live fabric editor
• Mirrors configuration state of device
• Scan device state by reconfiguring routing of “debug wire”

• Asynchronous (clockless) FIFO
• Performance scales smoothly with temperature changes
• Room temperature data “velocity” of 533 Mshifts/sec
• Performance gain due to a logic block configuration which

cannot be produced using the manufacturer’s tools.

• High-speed event counter
• Reliably count events occurring at >600MHz 11

Live Fabric Editor

• Displays logic and routing

• Configuration state cached on host
computer

• Changes issued via partial reconfiguration

• “Probe wire” routed from microcontroller
interrupt pin to each logic cell

• Full-fabric scan at approximately 5Hz

12

Example Application #1

Asynchronous (clockless) FIFO

• Fundamental component: Muller C-Element

13

M =

a

0 1

b
0 0 c

1 c 1ab

c

=

a b

c

C

Example Application #2

Asynchronous (clockless) FIFO

• Chain of Muller C Elements

14

C

C

C

C

Asynchronous (clockless) FIFO

• Muller C-Element
Configuration
• Utilizes internal

combinational feedback
feature of Atmel CLB

• Manufacturer tools cannot
exploit this feature

• Achieves peak
token velocity of
533Mstages/sec

15

Yi

T

C

F

Xo Yo

M

Xi

0

to successor

from successor

to predecessor

from predecessor

Asynchronous (clockless) FIFO

• As with all clockless ring FIFOs, the
occupancy/rate graph is divided into
three slope regions

16

 195

 200

 205

 210

 215

 220

 225

 230

 235

 240

 245

 0.6 0.65 0.7 0.75 0.8

M
T

o
k
e

n
s
/s

e
c

Occupancy (%)

occupancy/rate graph under various environmental conditions

cooling fan
baseline
15 ring oscillators adjacent to FIFO
90 ring oscillators adjacent to FIFO
90 ring oscillators two cells from FIFO

• Left side: limited
by forward
propagation time

• Plateau: limited by
communication

• Right side: limited
by stage recovery
time

Asynchronous (clockless) FIFO

• Rate/occupancy graphs are well-studied
for fixed FIFO sizes

17

• Typically in custom
VLSI, fixed number
of stages

• Reconfigurable
hardware lets us try
all 400 possible
sizes
• Much higher

resolution on
combined rate/
occupancy graph

 0

 50

 100

 150

 200

 250

 300

 0
 50

 100
 150

 200
 250

 300
 350

 400 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 50

 100

 150

 200

 250

 300

MTokens/sec

surface interpolated from data

"surface/all"

FIFO size

Occupancy (%)

MTokens/sec

Asynchronous (clockless) FIFO

18

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

M
T

o
k
e

n
s
/s

e
c

Occupancy (%)

Merged Occupancy/Rate Graphs for all FIFO Lengths

"surface/all2.csv"

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

M
T

o
k
e

n
s
/s

e
c

Occupancy (%)

Merged Occupancy/Rate Graphs for all FIFO Lengths

"surface/all2.csv"

High-speed event counter

• High frequency
signals cannot
be brought out
to pads
• Signal distortion,

missed edges

• Solution: on-
chip 1-bit
clockless
counter

19

0 Dividers ~320Mhz

1 Dividers

2 Dividers

3 Dividers

4 Dividers

~151Mhz

~78Mhz

~37Mhz

~19Mhz

Example Application #3

High-speed event counter

• Chain of self-timed counters

• Can reliably count events at ~600Mhz
• Exceeds rate of two-cell ring oscillator
• Approaches rate of single-cell oscillator
• Vastly exceeds toggle rate of flip flops

• Crude but useful “on-chip oscilliscope”

20

High-speed event counter

21

Eleven
Frequency
Dividers

Top
End-Cap

Top
U-Turn

Bottom
U-Turn

Summary

• Bitstream manipulation can be made easy
• Bitstream manipulation enables new applications
• Bitstream manipulation opens up new research areas
• Public bitstream documentation improves quality of tools
• Evidence: abits library, slipway board

• Existence proof

22

What is Next?

• Currently: adding support for more
devices & vendors

• Potentially: foundational component of a
completely open-source FPGA toolchain

23

Questions?

24

http://research.cs.berkeley.edu/project/slipway/

http://research.cs.berkeley.edu/project/slipway/
http://research.cs.berkeley.edu/project/slipway/

