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The Library and Platform

• Slipway
• Development board reference design
• ~USD$60 for pcb+parts
• Assemble by hand in ~30min
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• Abits
• Java library for Atmel At94k FPGAs

• bitstream creation/modification
• on-line partial reconfiguration

• 100% open source (BSD license)

M:\proj\slipway\pcb\slipway.r5.pcb  (Silkscreen, Top layer, Bottom layer)
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Background

• Microprocessors have publicly 
documented instruction sets
• Users expect and even assume this. 

• Until ~1997, FPGAs typically did as well

• Post-1997: manufacturers begin to treat 
FPGA “instruction sets” as a trade secret
• Claim that users don’t mind this.
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the most powerful aspects of the von 
Neumann architecture.
• Last 50 years: rich body of knowledge emerges for dealing 

with code as data: compilers, program transformation, 
linkers, loaders, garbage collectors, debuggers.

• Last 7 years: Hotspot JVM takes runtime code generation 
from “obscure research topic” to “standard feature”
➡ Performance cost of dynamic language features drops.

➡ A whole generation of business software is written in 
higher-level languages.
➡ Programmer productivity rises.
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So What?

• FCCMs/FPGAs are one of the leading 
alternatives to the von Neumann 
computation model
• No inherent barrier to code-as-data paridigm.

• However, practical barrier of bitstream secrecy.
• FPGA languages, compilers and tools have not evolved as 

quickly as those for software.
• FPGA design productivity has not kept pace with software 

design productivity growth.
• Coincidence?
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Atmel At94k Background

• Positive
• Fine-grained, “sea of gates”

• Fast connections to eight nearest neighbors
• 10-wire routing channel for each row/column

• Partial reconfiguration on an extremely fine grain
• On-die AVR microcontroller (manages partial reconfig)

• Negative
• Manufactured on an old 0.35µm process
• Nominal clock rate is ~100Mhz
• Largest device is 2300 CLBs (CLB = FF+4LUT)
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Abits

• Library for configuring Atmel At94k 
FPGAs
• Written in Java
• Bitstream creation, modification, parsing
• On-line partial reconfiguration
• 100% open source, BSD license
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Abits: API

• Same API for bitstreams and live devices
• bitfile on disk
• bitstream in memory
• running device accepting partial reconfiguration 

commands

• Heap-efficient

• Very low-level

• 4 user-visible classes, ~55 methods
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Abits: Example
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void foo(Fpslic fpslic) {

  Cell cell =
     fpslic.getCell(10,10);

  // X-Lut computes constant 1
  cell.xlut(0xff);

  // Y-Lut computes (Xin & Yin)
  cell.yi(SOUTH);
  cell.ylut(LUT_SELF & LUT_OTHER);

  // write to device (or file)
  fpslic.flush();

}



Slipway

• Reference design for development board
• USD$60 for pcb+parts
• Assemble by hand in <30min (all through-hole)
• Board masks are BSD licensed
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• USB interface
• Provides hard reset, configuration 

and 1Mbit/sec serial communication
• Bus powered
• No creaky parallel ports
• No drivers!
• Host-side library is also BSD licensed



The Applications

• Live fabric editor
• Mirrors configuration state of device
• Scan device state by reconfiguring routing of “debug wire”

• Asynchronous (clockless) FIFO
• Performance scales smoothly with temperature changes
• Room temperature data “velocity” of 533 Mshifts/sec
• Performance gain due to a logic block configuration which 

cannot be produced using the manufacturer’s tools.

• High-speed event counter
• Reliably count events occurring at >600MHz 11



Live Fabric Editor

• Displays logic and routing

• Configuration state cached on host 
computer

• Changes issued via partial reconfiguration

• “Probe wire” routed from microcontroller 
interrupt pin to each logic cell

• Full-fabric scan at approximately 5Hz
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Example Application #1



Asynchronous (clockless) FIFO

• Fundamental component: Muller C-Element
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Asynchronous (clockless) FIFO

• Chain of Muller C Elements
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Asynchronous (clockless) FIFO

• Muller C-Element 
Configuration
• Utilizes internal 

combinational feedback 
feature of Atmel CLB

• Manufacturer tools cannot 
exploit this feature

• Achieves peak 
token velocity of 
533Mstages/sec
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Asynchronous (clockless) FIFO

• As with all clockless ring FIFOs, the 
occupancy/rate graph is divided into 
three slope regions
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• Left side: limited 
by forward 
propagation time

• Plateau: limited by 
communication

• Right side: limited 
by stage recovery 
time



Asynchronous (clockless) FIFO

• Rate/occupancy graphs are well-studied 
for fixed FIFO sizes
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• Typically in custom 
VLSI, fixed number 
of stages

• Reconfigurable 
hardware lets us try 
all 400 possible 
sizes
• Much higher 

resolution on 
combined rate/
occupancy graph
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Asynchronous (clockless) FIFO
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High-speed event counter

• High frequency 
signals cannot 
be brought out 
to pads
• Signal distortion, 

missed edges

• Solution: on-
chip 1-bit 
clockless 
counter
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Example Application #3



High-speed event counter

• Chain of self-timed counters

• Can reliably count events at ~600Mhz
• Exceeds rate of two-cell ring oscillator
• Approaches rate of single-cell oscillator
• Vastly exceeds toggle rate of flip flops

• Crude but useful “on-chip oscilliscope”

20



High-speed event counter
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Summary

• Bitstream manipulation can be made easy
• Bitstream manipulation enables new applications
• Bitstream manipulation opens up new research areas
• Public bitstream documentation improves quality of tools
• Evidence: abits library, slipway board

• Existence proof
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What is Next?

• Currently: adding support for more 
devices & vendors

• Potentially: foundational component of a 
completely open-source FPGA toolchain
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Questions?
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http://research.cs.berkeley.edu/project/slipway/
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