
Hardware Design with Generalized Arrows

Adam Megacz
megacz@cs.berkeley.edu

03.Oct.2011

1/51

This Project

I First nontrivial application of generalized arrows.

I Not (even close to) a complete circuit-design solution.

3/51

Metaprogramming and the Milner Property

I A metaprogram is a program which produces a program (called the
object program).

I Metaprogramming is the act of writing metaprograms.

I The Milner Property: “well-typed programs don’t go wrong.”

I When one is metaprogramming, we want something stronger:
well-typed metaprograms should not be able to produce ill-typed
object programs (therefore the object programs can’t go wrong).

5/51

Metaprogramming and the Milner Property

I A metaprogram is a program which produces a program (called the
object program).

I Metaprogramming is the act of writing metaprograms.

I The Milner Property: “well-typed programs don’t go wrong.”

I When one is metaprogramming, we want something stronger:
well-typed metaprograms should not be able to produce ill-typed
object programs (therefore the object programs can’t go wrong).

5/51

Metaprogramming and the Milner Property

I A metaprogram is a program which produces a program (called the
object program).

I Metaprogramming is the act of writing metaprograms.

I The Milner Property: “well-typed programs don’t go wrong.”

I When one is metaprogramming, we want something stronger:
well-typed metaprograms should not be able to produce ill-typed
object programs (therefore the object programs can’t go wrong).

5/51

Metaprogramming and the Milner Property

I A metaprogram is a program which produces a program (called the
object program).

I Metaprogramming is the act of writing metaprograms.

I The Milner Property: “well-typed programs don’t go wrong.”

I When one is metaprogramming, we want something stronger:
well-typed metaprograms should not be able to produce ill-typed
object programs (therefore the object programs can’t go wrong).

5/51

What Problem Do Generalized Arrows Solve?

Generalized arrows are a representation for object programs which:

I Has the “Milner property for metaprograms”

I Does not assume that the object language’s expressions are a
superset of the metalanguage (like Monads and classic Arrows do).

I A monad’s return lifts arbitrary Haskell functions into the monad
I An arrow’s arr lifts arbitrary Haskell functions into the arrow

I Does not assume that the object language’s typing judgments are a
superset of the metalanguage’s typing judgments (like Monads and
classic Arrows do).

I Monadic metaprogramming cannot handle object languages with:
I affine types, because of (return $ \ -> ())
I linear types, because of (return $ \x -> (x,x))
I ordered types, because of (return $ \(x,y) -> (y,x))

I Likewise for arrows.

7/51

What Problem Do Generalized Arrows Solve?

Generalized arrows are a representation for object programs which:

I Has the “Milner property for metaprograms”

I Does not assume that the object language’s expressions are a
superset of the metalanguage (like Monads and classic Arrows do).

I A monad’s return lifts arbitrary Haskell functions into the monad
I An arrow’s arr lifts arbitrary Haskell functions into the arrow

I Does not assume that the object language’s typing judgments are a
superset of the metalanguage’s typing judgments (like Monads and
classic Arrows do).

I Monadic metaprogramming cannot handle object languages with:
I affine types, because of (return $ \ -> ())
I linear types, because of (return $ \x -> (x,x))
I ordered types, because of (return $ \(x,y) -> (y,x))

I Likewise for arrows.

7/51

What Problem Do Generalized Arrows Solve?

Generalized arrows are a representation for object programs which:

I Has the “Milner property for metaprograms”

I Does not assume that the object language’s expressions are a
superset of the metalanguage (like Monads and classic Arrows do).

I A monad’s return lifts arbitrary Haskell functions into the monad
I An arrow’s arr lifts arbitrary Haskell functions into the arrow

I Does not assume that the object language’s typing judgments are a
superset of the metalanguage’s typing judgments (like Monads and
classic Arrows do).

I Monadic metaprogramming cannot handle object languages with:
I affine types, because of (return $ \ -> ())
I linear types, because of (return $ \x -> (x,x))
I ordered types, because of (return $ \(x,y) -> (y,x))

I Likewise for arrows.

7/51

What Problem Do Generalized Arrows Solve?

Generalized arrows are a representation for object programs which:

I Has the “Milner property for metaprograms”

I Does not assume that the object language’s expressions are a
superset of the metalanguage (like Monads and classic Arrows do).

I A monad’s return lifts arbitrary Haskell functions into the monad
I An arrow’s arr lifts arbitrary Haskell functions into the arrow

I Does not assume that the object language’s typing judgments are a
superset of the metalanguage’s typing judgments (like Monads and
classic Arrows do).

I Monadic metaprogramming cannot handle object languages with:
I affine types, because of (return $ \ -> ())
I linear types, because of (return $ \x -> (x,x))
I ordered types, because of (return $ \(x,y) -> (y,x))

I Likewise for arrows.

7/51

What Problem Do Generalized Arrows Solve?

Generalized arrows are a representation for object programs which:

I Has the “Milner property for metaprograms”

I Does not assume that the object language’s expressions are a
superset of the metalanguage (like Monads and classic Arrows do).

I A monad’s return lifts arbitrary Haskell functions into the monad
I An arrow’s arr lifts arbitrary Haskell functions into the arrow

I Does not assume that the object language’s typing judgments are a
superset of the metalanguage’s typing judgments (like Monads and
classic Arrows do).

I Monadic metaprogramming cannot handle object languages with:
I affine types, because of (return $ \ -> ())
I linear types, because of (return $ \x -> (x,x))
I ordered types, because of (return $ \(x,y) -> (y,x))

I Likewise for arrows.

7/51

What Problem Do Generalized Arrows Solve?

Generalized arrows are a representation for object programs which:

I Has the “Milner property for metaprograms”

I Does not assume that the object language’s expressions are a
superset of the metalanguage (like Monads and classic Arrows do).

I A monad’s return lifts arbitrary Haskell functions into the monad
I An arrow’s arr lifts arbitrary Haskell functions into the arrow

I Does not assume that the object language’s typing judgments are a
superset of the metalanguage’s typing judgments (like Monads and
classic Arrows do).

I Monadic metaprogramming cannot handle object languages with:
I affine types, because of (return $ \ -> ())
I linear types, because of (return $ \x -> (x,x))
I ordered types, because of (return $ \(x,y) -> (y,x))

I Likewise for arrows.

7/51

What are Generalized Arrows? (1/2)

Four operations on elements (loop is defined in a subclass, GArrowLoop):

f >>> g

f g

loop f

f

first f

f

second g

g

9/51

What are Generalized Arrows? (2/2)

... and ten primitive elements (drop, copy, and swap are defined in
subclasses):

id drop copy swap

cancell uncancell cancelr uncancelr

assoc

(A⊗ B)

⊗
C

A
⊗

(B ⊗ C)

unassoc

(A⊗ B)

⊗
C

11/51

What are Generalized Arrows? (2/2)

... and ten primitive elements (drop, copy, and swap are defined in
subclasses):

id drop copy swap

cancell uncancell cancelr uncancelr

assoc

(A⊗ B)

⊗
C

A
⊗

(B ⊗ C)

unassoc

(A⊗ B)

⊗
C

11/51

Generalized Arrows

class Category g => GArrow g (**) u where

--id :: g x x

--(>>>) :: g x y -> g y z -> g x z

ga_first :: g x y -> g (x ** z) (y ** z)

ga_second :: g x y -> g (z ** x) (z ** y)

ga_cancell :: g (u**x) x

ga_cancelr :: g (x**u) x

ga_uncancell :: g x (u**x)

ga_uncancelr :: g x (x**u)

ga_assoc :: g ((x** y)**z) (x**(y **z))

ga_unassoc :: g (x**(y **z)) ((x** y)**z)

ga_copy :: g x (x**x)

ga_drop :: g x u

ga_swap :: g (x**y) (y**x)

ga_loop :: g (x**z) (y**z) -> g x y

13/51

Every Arrow is a GArrow

instance Arrow a => GArrow a (,) () where

ga_first = first

ga_second = second

ga_cancell = arr (\((),x) -> x)

ga_cancelr = arr (\(x,()) -> x)

ga_uncancell = arr (\x -> ((),x))

ga_uncancelr = arr (\x -> (x,()))

ga_assoc = arr (\((x,y),z) -> (x,(y,z)))

ga_unassoc = arr (\(x,(y,z)) -> ((x,y),z))

instance Arrow a => GArrowDrop a (,) () where

ga_drop = arr (\x -> ())

instance Arrow a => GArrowCopy a (,) () where

ga_copy = arr (\x -> (x,x))

instance Arrow a => GArrowSwap a (,) () where

ga_swap = arr (\(x,y) -> (y,x))

instance ArrowLoop a => GArrowLoop a (,) () where

ga_loop = loop

... but GArrow does not let arbitrary Haskell functions “leak” in since there is no arr.

15/51

Example

sample1 =

ga_copy >>>

ga_swap >>>

ga_first ga_drop >>>

ga_cancell

copy swap

first

drop cancell

The text format above is nice for processing GArrow expressions. In fact,
all of the diagrams in the paper and these slides were produced by the
GArrowTikZ instance, which emits TikZ code for these diagrams.
Unfortunately it is a pain for users to write GArrow expressions this way.

17/51

Example

sample1 =

ga_copy >>>

ga_swap >>>

ga_first ga_drop >>>

ga_cancell

copy swap

first

drop cancell

The text format above is nice for processing GArrow expressions. In fact,
all of the diagrams in the paper and these slides were produced by the
GArrowTikZ instance, which emits TikZ code for these diagrams.
Unfortunately it is a pain for users to write GArrow expressions this way.

17/51

Solution: Two-Level Expressions and Types

e0 ::= . . . | <[e1]> (level-0 expressions)

e1 ::= . . . | ˜̃e0 (level-1 expressions)

τ0 ::= . . . | <[τ1]>@α (level-0 types)

τ1 ::= . . . (level-1 types)

Flattening is a translation from two-level expressions to one-level
expressions by induction on the typing derivation.

I Translation by induction on the expression’s typing derivation.

I JΓ `α τK = GArrow g => g JΓK JτK
I Structural rules {weakening, exchange, contraction} become

primitive elements {ga drop, ga swap, ga copy}.
I Cut/Let becomes (>>>)

I LetRec becomes loop

I Var becomes id

Gory details in [Meg11] (preprint on arXiv).
19/51

Flattening Examples

demo1 :: <[(a,a)~~> b]>@z ->

<[a ~~> b]>@z

demo1 times =

<[\y -> ~~times y y]>

copy times

This diagram, and all the rest on future slides, were produced by running
the flattener and instantiating the resulting term with GArrowTikZ

21/51

Two-Level Syntax

demo2 :: (Int -> <[()~~>a]>@z) ->

<[(b,a)~~> c]>@z ->

<[b ~~> c]>@z

demo2 const times =

<[\y -> ~~times y ~~(const 12)]>

uncancelr second

const 12

times

23/51

Shallow/Deep/Multi-Level Embeddings

I In a shallow embedding, the Haskell program is the circuit.

I In a deep embedding, the Haskell program explains how to build the
circuit.

I In a multi-level embedding, the level-1 terms are the circuit and the
level-0 terms build the circuit.

25/51

Shallow/Deep/Multi-Level Embeddings

I In a shallow embedding, the Haskell program is the circuit.

I In a deep embedding, the Haskell program explains how to build the
circuit.

I In a multi-level embedding, the level-1 terms are the circuit and the
level-0 terms build the circuit.

25/51

Multi-Level Embeddings let the Types Say More

A shallow embedding’s type system does not distinguish between:

I A circuit with input type A and output type B.

I A program which takes a circuit of output type A and uses it to build
a circuit of output type B.

A multi-level embedding makes this distinction in its types:

circuit :: <[A~~>B]>

circuitTransformer :: <[x~~>A]> -> <[x~~>B]>

Why distinguish these? One answer: to distinguish feedback from
unrolling.

I Monadic deep embeddings do this by distinguishing between mfix

from (recursive) let.

27/51

Multi-Level Embeddings let the Types Say More

A shallow embedding’s type system does not distinguish between:

I A circuit with input type A and output type B.

I A program which takes a circuit of output type A and uses it to build
a circuit of output type B.

A multi-level embedding makes this distinction in its types:

circuit :: <[A~~>B]>

circuitTransformer :: <[x~~>A]> -> <[x~~>B]>

Why distinguish these? One answer: to distinguish feedback from
unrolling.

I Monadic deep embeddings do this by distinguishing between mfix

from (recursive) let.

27/51

Multi-Level Embeddings let the Types Say More

A shallow embedding’s type system does not distinguish between:

I A circuit with input type A and output type B.

I A program which takes a circuit of output type A and uses it to build
a circuit of output type B.

A multi-level embedding makes this distinction in its types:

circuit :: <[A~~>B]>

circuitTransformer :: <[x~~>A]> -> <[x~~>B]>

Why distinguish these? One answer: to distinguish feedback from
unrolling.

I Monadic deep embeddings do this by distinguishing between mfix

from (recursive) let.

27/51

Multi-Level Embeddings let the Types Say More

A shallow embedding’s type system does not distinguish between:

I A circuit with input type A and output type B.

I A program which takes a circuit of output type A and uses it to build
a circuit of output type B.

A multi-level embedding makes this distinction in its types:

circuit :: <[A~~>B]>

circuitTransformer :: <[x~~>A]> -> <[x~~>B]>

Why distinguish these? One answer: to distinguish feedback from
unrolling.

I Monadic deep embeddings do this by distinguishing between mfix

from (recursive) let.

27/51

Multi-Level Embeddings let the Types Say More

A shallow embedding’s type system does not distinguish between:

I A circuit with input type A and output type B.

I A program which takes a circuit of output type A and uses it to build
a circuit of output type B.

A multi-level embedding makes this distinction in its types:

circuit :: <[A~~>B]>

circuitTransformer :: <[x~~>A]> -> <[x~~>B]>

Why distinguish these? One answer: to distinguish feedback from
unrolling.

I Monadic deep embeddings do this by distinguishing between mfix

from (recursive) let.

27/51

Feedback

demo const times =

<[\x ->

let out = ~~times (~~times ~~(const 2) out) x

in out

]>

loopl

copy

swap

uncancell

const 2

times

times

Slogan: “Recursion (letrec) inside the brackets means feedback.”
29/51

Unrolling

demo3 times = pow 8

where

pow 0 x = const 0

pow 1 x = x

pow n x = <[~~times

~~(pow (n/2) x)

~~(pow (if n ‘mod‘ 2 == 0

then n/2

else n/2+1) x)]>

copy

second

copy

second

copy

first

copy

first

copy

second

copy

first

copy second

second

times

first

times

times

first

second

times

first

times times times

Slogan: “Recursion outside the brackets means repetitive structure.”
31/51

The SHA-256 Algorithm

a b c d + e f g h

ror

13

ror

2

ror

22

⊗

maj mux

+ + +

ror

11

ror

6

ror

25

⊗

+ + +

Magic
Constants

Padded
Expanded
Message

The SHA-256 Algorithm. Each solid rectangle is a 32-bit state
variable; the path into each rectangle computes its value in the next
round based on the values of the state variables in the previous round.
The standard specifies initialization values for the state variables prior to
the first message block.

33/51

Necessary Hardware Primitives

class BitSerialHardwarePrimitives g where

type Wire

high :: <[() ~~> Wire]>@g

low :: <[() ~~> Wire]>@g

not :: <[Wire,() ~~> Wire]>@g

xor :: <[Wire,(Wire,()) ~~> Wire]>@g

or :: <[Wire,(Wire,()) ~~> Wire]>@g

and :: <[Wire,(Wire,()) ~~> Wire]>@g

mux2 :: <[Wire,(Wire,(Wire,())) ~~> Wire]>@g

maj3 :: <[Wire,(Wire,(Wire,())) ~~> Wire]>@g

reg :: <[Wire,() ~~> Wire]>@g

repeat :: [Bool] -> <[() ~~> Wire]>@g

fifo :: Int -> <[Wire,() ~~> Wire]>@g

probe :: Int -> <[Wire,() ~~> Wire]>@g

oracle :: Int -> <[() ~~> Wire]>@g

35/51

A Bit-Serial Adder

xor3 = <[\x y z -> xor (xor x y) z]>

adder =

<[\in1 in2 ->

let firstBit = ~~(repeat [i/=0 | i<-[0..31]])

carry_out = reg (mux2 firstBit

zero

carry_in)

carry_in = maj3 carry_out in1 in2

in xor3 carry_out in1 in2

]>

37/51

A Bit-Serial Right Rotator

rotRight n =

<[\input ->

let sel = ~~(repeat [i >= 32-n | i<-[0..31]])

fifo1 = ~~(fifo (32-n)) input

fifo2 = ~~(fifo 32) fifo1

in mux2 sel fifo1 fifo2

]>

39/51

One Round of SHA-256

sha256round =

<[\load input k_plus_w ->

let a = ~~(fifo 32) (mux2 load a_in input)

b = ~~(fifo 32) a

c = ~~(fifo 32) b

d = ~~(fifo 32) c

e = ~~(fifo 32) (mux2 load e_in d)

f = ~~(fifo 32) e

g = ~~(fifo 32) f

h = ~~(fifo 32) g

s0 = xor3 (~~(rotRight 2) a_in)

(~~(rotRight 13) a_in)

(~~(rotRight 22) a_in)

s1 = xor3 (~~(rotRight 6) e_in)

(~~(rotRight 11) e_in)

(~~(rotRight 25) e_in)

a_in = adder t1 t2

e_in = adder t1 d

t1 = adder

(adder h s1)

(adder (mux2 e g f) k_plus_w)

t2 = adder s0 (maj3 a b c)

in h]>

41/51

32 Copies of the Circuit

The region in red holds 32 copies
of the SHA-256 circuit. Slices
shown in blue are the “overhead”
shared among all copies (address
generators, etc).

43/51

Performance

I Bit-serial adder’s carry
chain is a “wire through
time” rather than a “wire
through space.”

I With extra pipeline
registers, 350mhz is possible
on a Spartan-6 with no
manual placement
constraints.

I The leading open-source
bit-parallel SHA-256 core
needs manual placement
constraints to reach
180Mhz.

45/51

Performance: Disappointing

Unfortunately, the bit-parallel de-
sign (shown here) still gives more
throughput than a device full of
bit-serial hashers.

Silver lining: the bit-parallel de-
sign is unable to use more than
half the device. Many indepen-
dent copies of the bit-serial de-
sign can be used to “fill in the
gaps” left behind, making use of
otherwise-idle area.

47/51

Questions?

http://www.cs.berkeley.edu/~megacz/garrows/

49/51

Extra Slides Follow

51/51

